Mask_RCNN-master.zip

上传者: 44684071 | 上传时间: 2025-05-24 20:49:14 | 文件大小: 303.75MB | 文件类型: ZIP
**Mask R-CNN详解** Mask R-CNN 是一种深度学习模型,由Kaiming He、Georgia Gkioxari、Pedro Dollar和Ross Girshick在2017年提出,用于解决目标检测(object detection)和实例分割(instance segmentation)问题。这个模型是基于Faster R-CNN的改进版,它在Faster R-CNN的基础上添加了一个分支来预测每个目标的像素级别的掩模,从而实现了对每个检测到的目标进行精确的分割。 **Faster R-CNN与Mask R-CNN的区别** Faster R-CNN是目标检测的经典算法,它通过区域提议网络(Region Proposal Network, RPN)生成候选框,并使用分类和回归网络对这些候选框进行调整和分类。而Mask R-CNN在此基础上,增加了一个并行的分支,即Mask分支,用于生成每个目标的二值掩模,这使得它可以同时完成目标检测和实例分割任务。 **Mask R-CNN结构** Mask R-CNN的核心结构包括三个部分:特征提取网络、区域提议网络和头部。特征提取网络通常采用预训练的卷积神经网络,如ResNet或VGG,用于提取图像的高级特征。区域提议网络负责生成可能包含目标的候选框。头部则包含两个分支:一个用于分类和边界框回归,另一个用于生成像素级别的掩模。 **训练权重mask_rcnn_coco.h5** `mask_rcnn_coco.h5`是一个预先训练好的权重文件,包含了在COCO数据集上训练得到的Mask R-CNN模型参数。COCO数据集是广泛使用的物体检测和分割数据集,包含80个类别,如人、车、动物等,以及大量的实例标注。使用这个预训练权重可以极大地加速新模型的训练过程,因为它已经学习到了大量的通用特征。 **使用Mask R-CNN** 在`Mask_RCNN-master`这个压缩包中,包含了完整的Mask R-CNN实现代码。用户可以利用这些代码进行模型的微调、新的数据集训练,或者直接用预训练模型进行预测。通常,你需要配置好模型参数,加载`mask_rcnn_coco.h5`权重,然后输入自己的图像数据进行测试。 **实例应用** Mask R-CNN在很多领域都有应用,例如在医疗影像分析中,它可以用来识别和分割肿瘤;在自动驾驶中,用于识别和跟踪道路中的行人和车辆;在遥感图像处理中,可以用于建筑物、道路等对象的检测和分割。 Mask R-CNN是一种强大的深度学习模型,它在目标检测和实例分割方面有着卓越的表现,且通过`mask_rcnn_coco.h5`这样的预训练权重,能够方便地应用于各种实际场景。

文件下载

资源详情

[{"title":"( 83 个子文件 303.75MB ) Mask_RCNN-master.zip","children":[{"title":"Mask_RCNN-master","children":[{"title":"MANIFEST.in <span style='color:#111;'> 58B </span>","children":null,"spread":false},{"title":"images","children":[{"title":"2516944023_d00345997d_z.jpg <span style='color:#111;'> 176.98KB </span>","children":null,"spread":false},{"title":"9247489789_132c0d534a_z.jpg <span style='color:#111;'> 282.17KB </span>","children":null,"spread":false},{"title":"8734543718_37f6b8bd45_z.jpg <span style='color:#111;'> 162.83KB </span>","children":null,"spread":false},{"title":"9118579087_f9ffa19e63_z.jpg <span style='color:#111;'> 300.74KB </span>","children":null,"spread":false},{"title":"3627527276_6fe8cd9bfe_z.jpg <span style='color:#111;'> 157.16KB </span>","children":null,"spread":false},{"title":"8239308689_efa6c11b08_z.jpg <span style='color:#111;'> 221.09KB </span>","children":null,"spread":false},{"title":"3800883468_12af3c0b50_z.jpg <span style='color:#111;'> 119.68KB </span>","children":null,"spread":false},{"title":"8829708882_48f263491e_z.jpg <span style='color:#111;'> 237.28KB </span>","children":null,"spread":false},{"title":"7581246086_cf7bbb7255_z.jpg <span style='color:#111;'> 142.37KB </span>","children":null,"spread":false},{"title":"3878153025_8fde829928_z.jpg <span style='color:#111;'> 85.81KB </span>","children":null,"spread":false},{"title":"25691390_f9944f61b5_z.jpg <span style='color:#111;'> 176.20KB </span>","children":null,"spread":false},{"title":"1045023827_4ec3e8ba5c_z.jpg <span style='color:#111;'> 137.64KB </span>","children":null,"spread":false},{"title":"6821351586_59aa0dc110_z.jpg <span style='color:#111;'> 212.46KB </span>","children":null,"spread":false},{"title":"12283150_12d37e6389_z.jpg <span style='color:#111;'> 66.75KB </span>","children":null,"spread":false},{"title":"3651581213_f81963d1dd_z.jpg <span style='color:#111;'> 147.02KB </span>","children":null,"spread":false},{"title":"5951960966_d4e1cda5d0_z.jpg <span style='color:#111;'> 157.21KB </span>","children":null,"spread":false},{"title":"8053677163_d4c8f416be_z.jpg <span style='color:#111;'> 219.62KB </span>","children":null,"spread":false},{"title":"7933423348_c30bd9bd4e_z.jpg <span style='color:#111;'> 208.56KB </span>","children":null,"spread":false},{"title":"3862500489_6fd195d183_z.jpg <span style='color:#111;'> 94.01KB </span>","children":null,"spread":false},{"title":"3132016470_c27baa00e8_z.jpg <span style='color:#111;'> 169.62KB </span>","children":null,"spread":false},{"title":"4410436637_7b0ca36ee7_z.jpg <span style='color:#111;'> 123.79KB </span>","children":null,"spread":false},{"title":"6584515005_fce9cec486_z.jpg <span style='color:#111;'> 142.24KB </span>","children":null,"spread":false},{"title":"2502287818_41e4b0c4fb_z.jpg <span style='color:#111;'> 130.58KB </span>","children":null,"spread":false},{"title":"8433365521_9252889f9a_z.jpg <span style='color:#111;'> 177.85KB </span>","children":null,"spread":false},{"title":"262985539_1709e54576_z.jpg <span style='color:#111;'> 121.88KB </span>","children":null,"spread":false},{"title":"2383514521_1fc8d7b0de_z.jpg <span style='color:#111;'> 203.23KB </span>","children":null,"spread":false},{"title":"8699757338_c3941051b6_z.jpg <span style='color:#111;'> 234.31KB </span>","children":null,"spread":false},{"title":"8512296263_5fc5458e20_z.jpg <span style='color:#111;'> 145.92KB </span>","children":null,"spread":false},{"title":"4782628554_668bc31826_z.jpg <span style='color:#111;'> 223.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"assets","children":[{"title":"street.png <span style='color:#111;'> 890.48KB </span>","children":null,"spread":false},{"title":"detection_anchors.png <span style='color:#111;'> 746.79KB </span>","children":null,"spread":false},{"title":"project_usiigaci1.gif <span style='color:#111;'> 2.54MB </span>","children":null,"spread":false},{"title":"nucleus_segmentation.png <span style='color:#111;'> 708.45KB </span>","children":null,"spread":false},{"title":"images_to_osm.png <span style='color:#111;'> 983.02KB </span>","children":null,"spread":false},{"title":"project_usiigaci2.gif <span style='color:#111;'> 609.42KB </span>","children":null,"spread":false},{"title":"detection_final.png <span style='color:#111;'> 887.11KB </span>","children":null,"spread":false},{"title":"mapping_challenge.png <span style='color:#111;'> 613.20KB </span>","children":null,"spread":false},{"title":"detection_refinement.png <span style='color:#111;'> 702.75KB </span>","children":null,"spread":false},{"title":"project_ice_wedge_polygons.png <span style='color:#111;'> 1.00MB </span>","children":null,"spread":false},{"title":"4k_video.gif <span style='color:#111;'> 11.61MB </span>","children":null,"spread":false},{"title":"detection_activations.png <span style='color:#111;'> 69.11KB </span>","children":null,"spread":false},{"title":"detection_tensorboard.png <span style='color:#111;'> 43.08KB </span>","children":null,"spread":false},{"title":"project_grass_gis.png <span style='color:#111;'> 578.81KB </span>","children":null,"spread":false},{"title":"project_shiny1.jpg <span style='color:#111;'> 216.48KB </span>","children":null,"spread":false},{"title":"detection_histograms.png <span style='color:#111;'> 13.43KB </span>","children":null,"spread":false},{"title":"detection_masks.png <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"balloon_color_splash.gif <span style='color:#111;'> 9.21MB </span>","children":null,"spread":false},{"title":"project_3dbuildings.png <span style='color:#111;'> 959.02KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"mask_rcnn_coco.h5 <span style='color:#111;'> 245.63MB </span>","children":null,"spread":false},{"title":"samples","children":[{"title":"balloon","children":[{"title":"Mask_R-CNN_ICCV_2017_paper.pdf <span style='color:#111;'> 1.87MB </span>","children":null,"spread":false},{"title":"inspect_balloon_data.ipynb <span style='color:#111;'> 7.80MB </span>","children":null,"spread":false},{"title":"balloon.py <span style='color:#111;'> 13.71KB </span>","children":null,"spread":false},{"title":"inspect_balloon_model.ipynb <span style='color:#111;'> 9.99MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"nucleus","children":[{"title":"inspect_nucleus_model.ipynb <span style='color:#111;'> 6.59MB </span>","children":null,"spread":false},{"title":"inspect_nucleus_data.ipynb <span style='color:#111;'> 4.21MB </span>","children":null,"spread":false},{"title":"nucleus.py <span style='color:#111;'> 18.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"shapes","children":[{"title":"train_shapes.ipynb <span style='color:#111;'> 99.23KB </span>","children":null,"spread":false},{"title":"shapes.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"train_shapes-checkpoint.ipynb <span style='color:#111;'> 99.23KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"demo.ipynb <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"demo-checkpoint.ipynb <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"coco","children":[{"title":"coco.py <span style='color:#111;'> 21.04KB </span>","children":null,"spread":false},{"title":"inspect_weights.ipynb <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"inspect_model.ipynb <span style='color:#111;'> 9.84MB </span>","children":null,"spread":false},{"title":"inspect_data.ipynb <span style='color:#111;'> 7.84MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"setup.cfg <span style='color:#111;'> 99B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 119B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"mrcnn","children":[{"title":"visualize.py <span style='color:#111;'> 18.51KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 33.46KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-36.pyc <span style='color:#111;'> 26.50KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":"model.cpython-36.pyc <span style='color:#111;'> 76.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 123.98KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 9.18KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"parallel_model.py <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false}],"spread":true},{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明