贝叶斯与KNN算法实现

上传者: 44167426 | 上传时间: 2023-01-03 12:26:15 | 文件大小: 734KB | 文件类型: RAR
尾花数据集是入门的经典数据集。Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。在三个类别中,其中有一个类别和其他两个类别是线性可分的。假设鸢尾花数据集的各个类别是服从正态分布的,尝试利用贝叶斯决策论的原理, 1. 设计贝叶斯分类器; 2. 设计基于最近邻准则的分类器。 资源包括代码实现和课程报告--Bayes和KNN分类器实现鸢尾花数据集分类 源码实现包括手撕贝叶斯和KNN以及使用工具包实现 课程报告主要包括以下部分: 一、 问题描述 二、 数据预处理 (1)划分数据集 (2)数据可视化 三、 模型基本原理 (1)朴素贝叶斯算法原理 (2)KNN算法原理 四、 贝叶斯分类器设计 (1)算法过程 (2)结果输出 五、 KNN分类器设计 (1)算法过程 (2)结果输出 六、 利用工具包进行设计 (1)贝叶斯分类器 (2)KNN分类器

文件下载

资源详情

[{"title":"( 5 个子文件 734KB ) 贝叶斯与KNN算法实现","children":[{"title":"贝叶斯与KNN算法实现","children":[{"title":"贝叶斯与KNN算法实现.docx <span style='color:#111;'> 799.82KB </span>","children":null,"spread":false},{"title":"bayes1.py <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"项目路径.txt <span style='color:#111;'> 22B </span>","children":null,"spread":false},{"title":"iris.data <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"knn2.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明