大规模车辆路径问题的深度强化学习算法研究 mind map

上传者: 43537420 | 上传时间: 2022-09-02 19:07:15 | 文件大小: 4.58MB | 文件类型: PNG
本文以深度强化学习为基础,设计出一种适用于求解大规模车辆路径问题的模型架 构。采用了预训练模型+基于相对位置的 Transformer网络+A2C强化学习训练框架,为 后续研究大规模车辆路径问题的扩展问题和大规模组合优化问题提供了新的深度强化 学习算法框架。本文中的深度强化学习算法解决了以下问题: (1) 不同规模算例可以共享并继承其他规模训练完的模型,在这种共享模型的机制下, 避免了算例规模相近的模型的重复训练。 (2) 预训练模型能够继承其他规模训练出的模型经验,相对位置节点提高了在大规模 车辆路径问题中特征抓取的精确性,A2C强化学习训练框架环节采用无监督学习, 在无标签训练集中训练中规避经验回溯问题,这三方面针对大规模车辆路径问题 做出的调整,提高了训练效率和收敛效果。 (3) 通过预训练机制解决了大规模车辆路径问题内存溢出的情况,解决了目前已有算 法在大规模算例训练时,内存溢出训练中断等问题。 (4) 与经典的启发式算法和元启发式算法进行比较,在同等求解速度的算法中,本文 算法的求解质量方面全面超越这些算法。并且在当前已有的深度强化学习解决方 案中,本文设计的算法和效

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明