译文_Identifying-Encrypted-Malware-Traffic-with-Contex.docx

上传者: 42362440 | 上传时间: 2022-04-26 18:08:24 | 文件大小: 176KB | 文件类型: DOCX
Identifying Encrypted Malware Traffic with Contextual Flow Data 识别加密网络流量中包含的威胁会带来一系列独特的挑战。监视此流量中是否存在威胁和恶意软件很重要,但是必须以保持加密完整性的方式进行监视。由于模式匹配无法对加密数据进行操作,因此以前的方法已经利用了从流中收集的可观察到的元数据,例如流的数据包长度和到达时间。在这项工作中,我们通过考虑数据全能性来扩展当前的最新技术方法。为此,我们开发了受监督的机器学习模型,这些模型利用了一组独特且多样化的网络流数据功能。这些数据功能包括TLS握手元数据,链接到加密流的DNS上下文流以及5分钟内来自同一源IP地址的HTTP上下文流的HTTP标头。 我们首先展示数百万个唯一流上恶意流量和良性流量对TLS,DNS和HTTP的使用之间的区别。本研究用于设计具有最大区分能力的功能集。然后,我们表明,将这种上下文信息合并到有监督的学习系统中,可以对分类为加密的恶意流的问题以0.00%的错误发现率显着提高性能。我们还将在一个独立的真实数据集中验证我们的误报率。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明