集成学习方法matlab实现

上传者: 41611588 | 上传时间: 2019-12-21 20:54:30 | 文件大小: 519KB | 文件类型: zip
集成学习(Ensemble Learning)有时也被笼统地称作提升(Boosting)方法,广泛用于分类和回归任务。它最初的思想很简单:使用一些(不同的)方法改变原始训练样本的分布,从而构建多个不同的分类器,并将这些分类器线性组合得到一个更强大的分类器,来做最后的决策。本文件内包含多种集成学习方法,可进行选择,比较其优劣势

文件下载

资源详情

[{"title":"( 33 个子文件 519KB ) 集成学习方法matlab实现","children":[{"title":"Classifier-Ensembles-master","children":[{"title":"combination_rules","children":[{"title":"Readme.md <span style='color:#111;'> 327B </span>","children":null,"spread":false},{"title":"individual_combiners","children":[{"title":"CombinersSeparately.zip <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"decision_templates_combiner.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"ldc_combiner.m <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"median_combiner.m <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"bks_combiner.m <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"tree_combiner.m <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"majority_combiner.m <span style='color:#111;'> 552B </span>","children":null,"spread":false},{"title":"weighted_average_combiner.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"TryOutCombiners.m <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"average_combiner.m <span style='color:#111;'> 822B </span>","children":null,"spread":false},{"title":"TreeCombinerRegions.png <span style='color:#111;'> 19.41KB </span>","children":null,"spread":false},{"title":"ridge_regression_combiner.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"product_combiner.m <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"nb_combiner.m <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"maximum_combiner.m <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"minimum_combiner.m <span style='color:#111;'> 823B </span>","children":null,"spread":false}],"spread":false},{"title":"demo","children":[{"title":"FishDataNoise30.png <span style='color:#111;'> 23.25KB </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"ExampleClassifierCombinationRules.m <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"TwoEnsembleView.png <span style='color:#111;'> 224.51KB </span>","children":null,"spread":false},{"title":"bks_combiner.m <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"noise_slider_callback.m <span style='color:#111;'> 842B </span>","children":null,"spread":false},{"title":"create_ensemble_callback.m <span style='color:#111;'> 1003B </span>","children":null,"spread":false},{"title":"train_linear.m <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"TwoEnsemblesRidge50.png <span style='color:#111;'> 245.56KB </span>","children":null,"spread":false},{"title":"FishDataNoNoise.png <span style='color:#111;'> 18.10KB </span>","children":null,"spread":false},{"title":"plot_combiner.m <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"fish_data.m <span style='color:#111;'> 879B </span>","children":null,"spread":false},{"title":"create_ensemble2_callback.m <span style='color:#111;'> 914B </span>","children":null,"spread":false},{"title":"nb_combiner.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 79B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明