DataScience:机器学习中特征工程之WOE编码(离散变量编码/有监督)的简介、计算过程、案例应用之详细攻略

上传者: 41185868 | 上传时间: 2022-06-16 14:05:38 | 文件大小: 508KB | 文件类型: DOCX
DataScience:机器学习中特征工程之WOE编码(离散变量编码/有监督)的简介、计算过程、案例应用之详细攻略 (1)、什么是WOE编码 (2)、案例理解WOE编码 (3)、WOE编码技术的深度思考 (4)、为什么选择采用WOE编码? (5)、WOE编码的优势 WOE编码—离散变量编码(有监督性的编码) 在建模前,我们需要把原始的值转化成WOE值才能使得模型效果好。 提出问题 怎样对字段的每个分段进行评分呢?这个评分是怎么来的? 解决方案 WOE编码, 将预测概率值转化为评分, 利用变量相关性分析和变量的系数符号保证每个分箱评分的合理性。 分箱之后我们便得到了一系列的离散变量,下面需要对变量进行编码,将离散变量转化为连续变量。WOE编码是评分卡模型常用的编码方式。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明