[{"title":"( 17 个子文件 3.95MB ) 基于LSTM交通客流预测.zip","children":[{"title":"trafficflowforecasting","children":[{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"交通客流预测-20184350333.doc <span style='color:#111;'> 607.50KB </span>","children":null,"spread":false},{"title":"答辩.ppt <span style='color:#111;'> 3.81MB </span>","children":null,"spread":false},{"title":"数据","children":[{"title":"test_station_0309-【A09】轨道交通智慧客流分析预测【八维通】.csv <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"nanning_line1.csv <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"nanning_weather.csv <span style='color:#111;'> 16.10KB </span>","children":null,"spread":false},{"title":"城市天气数据-【A09】轨道交通智慧客流分析预测【八维通】.xlsx <span style='color:#111;'> 17.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"客流预测","children":[{"title":"predict.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"lstm(32).h5 <span style='color:#111;'> 79.23KB </span>","children":null,"spread":false},{"title":"nanning_line1.csv <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"lstm_model.h5 <span style='color:#111;'> 31.13KB </span>","children":null,"spread":false},{"title":"nanning_weather.csv <span style='color:#111;'> 16.10KB </span>","children":null,"spread":false},{"title":".spyproject","children":[{"title":"codestyle.ini <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"workspace.ini <span style='color:#111;'> 261B </span>","children":null,"spread":false},{"title":"vcs.ini <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"encoding.ini <span style='color:#111;'> 58B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 9.95KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]