[{"title":"( 32 个子文件 73.14MB ) 华泰人工智能系列1-32.zip","children":[{"title":"人工智能系列","children":[{"title":"【华泰金工】人工智能11:人工智能选股之stacking集成学习20180503.pdf <span style='color:#111;'> 2.42MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能1:人工智能选股框架及经典算法简介20170601.pdf <span style='color:#111;'> 3.20MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能24:投石问路:技术分析可靠否?真假序列识别研究.pdf <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能10:宏观周期指标应用于随机森林选股20180320.pdf <span style='color:#111;'> 1.69MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能8:人工智能选股之全连接神经网络20171123.pdf <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能21:基于遗传规划的选股因子挖掘.pdf <span style='color:#111;'> 3.28MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能18:机器学习选股模型的调仓频率实证20190409.pdf <span style='color:#111;'> 987.66KB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能16:再论时序交叉验证对抗过拟合20190218.pdf <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能12:人工智能选股之特征选择20180725.pdf <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能30:从关联到逻辑:因果推断初探.pdf <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能15:人工智能选股之卷积神经网络20190213.pdf <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能5:人工智能选股之随机森林模型20170831.pdf <span style='color:#111;'> 2.10MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能14:对抗过拟合:从时序交叉验证谈起20181128.pdf <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能4:人工智能选股之朴素贝叶斯模型20170817.pdf <span style='color:#111;'> 2.07MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能13:人工智能选股之损失函数的改进20180802.pdf <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能26:遗传规划在CTA信号挖掘中的应用.pdf <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能28:基于量价的人工智能选股体系概览.pdf <span style='color:#111;'> 2.36MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能17:人工智能选股之数据标注方法实证20190313.pdf <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能20:必然中的偶然:机器学习中的随机数20190429.pdf <span style='color:#111;'> 1.59MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能19:偶然中的必然:重采样技术检验过拟合20190422.pdf <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能2:人工智能选股之广义线性模型20170622.pdf <span style='color:#111;'> 2.56MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能23:再探基于遗传规划的选股因子挖掘.pdf <span style='color:#111;'> 8.01MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能32:AlphaNet:因子挖掘神经网络.pdf <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能3:人工智能选股之支持向量机模型20170804.pdf <span style='color:#111;'> 3.10MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能6:人工智能选股之Boosting模型20170911.pdf <span style='color:#111;'> 2.72MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能9:人工智能选股之循环神经网络模型20171124.pdf <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能27:揭开机器学习模型的黑箱.pdf <span style='color:#111;'> 2.34MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能25:市场弱有效性检验与择时战场选择.pdf <span style='color:#111;'> 2.77MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能7:人工智能选股之Python实战20170919.pdf <span style='color:#111;'> 3.36MB </span>","children":null,"spread":false},{"title":"【人工智能】人工智能22:回测过拟合概率.pdf <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能29:提升超额收益:另类标签和集成学习.pdf <span style='color:#111;'> 1.79MB </span>","children":null,"spread":false},{"title":"【华泰金工】人工智能31:生成对抗网络GAN初探.pdf <span style='color:#111;'> 2.95MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]