[{"title":"( 33 个子文件 201KB ) 使用 Python 和 Julia 进行分布式模拟量子退火的特征子集选择的量子启发遗传算法_julia_代码_下载","children":[{"title":"QGA_QSA-main","children":[{"title":"diagram.jpeg <span style='color:#111;'> 30.85KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"Julia qga_qsa","children":[{"title":"QSA_multi.ipynb <span style='color:#111;'> 16.36KB </span>","children":null,"spread":false},{"title":"QSA_single.ipynb <span style='color:#111;'> 179.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"Python qga_qsa","children":[{"title":"qsa_multi.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"qsa_single.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"log.txt <span style='color:#111;'> 350.20KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"qga.py <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"qga.cpython-38.pyc <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"utility.cpython-38.pyc <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"utils.cpython-38.pyc <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"qubo.cpython-38.pyc <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"qubo.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"utility.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 214B </span>","children":null,"spread":false},{"title":"qubos","children":[{"title":"iris_qubo.csv <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"wine_qubo.csv <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"wiscon_qubo.csv <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"Ecoli_qubo.csv <span style='color:#111;'> 1018B </span>","children":null,"spread":false},{"title":"CMC_qubo.csv <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"Vehicle_qubo.csv <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"lymphography_qubo.csv <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"wine.csv <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false},{"title":"dermatology.csv <span style='color:#111;'> 26.45KB </span>","children":null,"spread":false},{"title":"lung_cancer.csv <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"wbdc.csv <span style='color:#111;'> 117.81KB </span>","children":null,"spread":false},{"title":"Ecoli.csv <span style='color:#111;'> 12.35KB </span>","children":null,"spread":false},{"title":"wiscon.csv <span style='color:#111;'> 14.61KB </span>","children":null,"spread":false},{"title":"CMC.csv <span style='color:#111;'> 31.87KB </span>","children":null,"spread":false},{"title":"Vehicle.csv <span style='color:#111;'> 54.92KB </span>","children":null,"spread":false},{"title":"lymphography.csv <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false}],"spread":true},{"title":".vscode","children":[{"title":"settings.json <span style='color:#111;'> 80B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]