上传者: 37085158
|
上传时间: 2022-07-14 12:08:28
|
文件大小: 11KB
|
文件类型: PY
普通的 DQN 算法通常会导致对值的过高估计,通过神经网络估算的Q值本身在某些时候会产生正向或负向的误差,在 DQN 的更新方式下神经网络会将正向误差累积。对于动作空间较大的任务,DQN 中的过高估计问题会非常严重,造成 DQN 无法有效工作的后果。
为了解决这一问题,Double DQN 算法提出利用两个独立训练的神经网络估算值函数,将训练网络作为 Double DQN 算法中的第一套神经网络来选取动作,将目标网络作为第二套神经网络计算值,极大的缓解了DQN过估计的问题。
这个程序完整实现了DoubleDQN算法,并且在Pendulum-v0环境上验证了过估计问题,可以从实验结果中看出,DoubleDQN确实缓解了DQN的过估计问题。