卷积神经网络+网络结构+绘制网络结构图

上传者: 36949278 | 上传时间: 2022-11-19 14:25:32 | 文件大小: 1.41MB | 文件类型: ZIP
本资源源项目为PlotNeuralNet,我在使用源代码过程中遇到了一些问题,并且出于自己的需求进行了一些改进,修改后的代码可以在Windows系统下成功运行,可以绘制非正方形的网络结构图,且在我看来绘制结果更加美观。 资源适用于对展示卷积神经网络具体结构有需求的研究人员,用户在下载本项目后按照README官方教程中的Getting Started部分进行使用,简单学习过语法后便可以通过test_simple.py代码绘制自己的卷积神经网络结构并在同路径下生成PDF文件,官方还提供了LeNet, UNet等经典卷积神经网络的代码,用户可直接进行使用。

文件下载

资源详情

[{"title":"( 46 个子文件 1.41MB ) 卷积神经网络+网络结构+绘制网络结构图","children":[{"title":"PlotNeuralNet","children":[{"title":"tikzmake.sh <span style='color:#111;'> 224B </span>","children":null,"spread":false},{"title":"pycore","children":[{"title":"blocks.py <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 106B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 163B </span>","children":null,"spread":false},{"title":"tikzeng.cpython-38.pyc <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"blocks.cpython-38.pyc <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"tikzeng.py <span style='color:#111;'> 6.56KB </span>","children":null,"spread":false},{"title":"tikzeng.pyc <span style='color:#111;'> 6.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"modify_net.png <span style='color:#111;'> 244.02KB </span>","children":null,"spread":false},{"title":"Box_modify.png <span style='color:#111;'> 60.10KB </span>","children":null,"spread":false},{"title":"origin_net.png <span style='color:#111;'> 339.03KB </span>","children":null,"spread":false},{"title":"tikzeng_modify.png <span style='color:#111;'> 121.61KB </span>","children":null,"spread":false},{"title":"sh_modify.png <span style='color:#111;'> 74.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"pyexamples","children":[{"title":"test_simple.pdf <span style='color:#111;'> 96.13KB </span>","children":null,"spread":false},{"title":"test_simple.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"layers","children":[{"title":"Ball.sty <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"Box.sty <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"init.tex <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"RightBandedBox.sty <span style='color:#111;'> 5.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":"HED","children":[{"title":"HED.tex <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"HED.pdf <span style='color:#111;'> 36.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"SoftmaxLoss","children":[{"title":"SoftmaxLoss.tex <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"SoftmaxLoss.pdf <span style='color:#111;'> 59.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"Unet_Ushape","children":[{"title":"Unet_ushape.pdf <span style='color:#111;'> 44.28KB </span>","children":null,"spread":false},{"title":"Unet_ushape.tex <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"fcn8s","children":[{"title":"cats.jpg <span style='color:#111;'> 60.63KB </span>","children":null,"spread":false},{"title":"fcn8.pdf <span style='color:#111;'> 99.18KB </span>","children":null,"spread":false},{"title":"fcn8.tex <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"VGG16","children":[{"title":"vgg16.tex <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"vgg16.pdf <span style='color:#111;'> 36.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"fcn32s","children":[{"title":"fcn32.pdf <span style='color:#111;'> 36.33KB </span>","children":null,"spread":false},{"title":"fcn32.tex <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"LeNet","children":[{"title":"lenet.pdf <span style='color:#111;'> 27.93KB </span>","children":null,"spread":false},{"title":"lenet_data2.png <span style='color:#111;'> 27.50KB </span>","children":null,"spread":false},{"title":"lenet.txt <span style='color:#111;'> 135B </span>","children":null,"spread":false},{"title":"lenet.tex <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false}],"spread":false},{"title":"AlexNet","children":[{"title":"alexnet.tex <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"alexnet.pdf <span style='color:#111;'> 30.69KB </span>","children":null,"spread":false},{"title":"alexnet_data.png <span style='color:#111;'> 28.11KB </span>","children":null,"spread":false}],"spread":false},{"title":"Unet","children":[{"title":"Unet.tex <span style='color:#111;'> 8.38KB </span>","children":null,"spread":false},{"title":"Unet.pdf <span style='color:#111;'> 38.04KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明