粒子群算法

上传者: 36783949 | 上传时间: 2022-05-24 14:46:25 | 文件大小: 40.72MB | 文件类型: RAR
CSO
基于PSO粒子群优化算法改进的CSO算法,克服PSO的缺点,运行速度更快

文件下载

资源详情

[{"title":"( 51 个子文件 40.72MB ) 粒子群算法","children":[{"title":"CSO","children":[{"title":"cso.pptx <span style='color:#111;'> 243.51KB </span>","children":null,"spread":false},{"title":"CSO_Matlab","children":[{"title":"CSO_Matlab","children":[{"title":"sphere_shift_func_data.mat <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"rosenbrock_shift_func_data.mat <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"CSOF1.mat <span style='color:#111;'> 9.74MB </span>","children":null,"spread":false},{"title":"rastrigin_shift_func_data.mat <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"benchmark_func.m <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"fastfractal_doubledip_data.mat <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"griewank_shift_func_data.mat <span style='color:#111;'> 7.63KB </span>","children":null,"spread":false},{"title":"ackley_shift_func_data.mat <span style='color:#111;'> 7.66KB </span>","children":null,"spread":false},{"title":"FractalFunctions.jar <span style='color:#111;'> 36.55KB </span>","children":null,"spread":false},{"title":"schwefel_shift_func_data.mat <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false},{"title":"CEC08 Func","children":[{"title":"sphere_shift_func_data.mat <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"rosenbrock_shift_func_data.mat <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"rastrigin_shift_func_data.mat <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"benchmark_func.m <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"fastfractal_doubledip_data.mat <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"griewank_shift_func_data.mat <span style='color:#111;'> 7.63KB </span>","children":null,"spread":false},{"title":"ackley_shift_func_data.mat <span style='color:#111;'> 7.66KB </span>","children":null,"spread":false},{"title":"FractalFunctions.jar <span style='color:#111;'> 36.55KB </span>","children":null,"spread":false},{"title":"schwefel_shift_func_data.mat <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false},{"title":"fbias_data.mat <span style='color:#111;'> 195B </span>","children":null,"spread":false}],"spread":false},{"title":"CSO.m <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"fbias_data.mat <span style='color:#111;'> 195B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"崔方舒-s20060147-曾建潮-适合于随机优化问题的微粒群算法研究.doc <span style='color:#111;'> 992.00KB </span>","children":null,"spread":false},{"title":"ELM相关文献","children":[{"title":"Wind-Turbine-Intelligent-Control-ELM.pdf <span style='color:#111;'> 7.17MB </span>","children":null,"spread":false},{"title":"Power-Line-Fault-Diagnosis-ELM.pdf <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"Dynamic-Systems-ELM.pdf <span style='color:#111;'> 2.73MB </span>","children":null,"spread":false},{"title":"Probability-ELM.pdf <span style='color:#111;'> 2.36MB </span>","children":null,"spread":false},{"title":"Complex-Time-Varying-System-ELM.pdf <span style='color:#111;'> 2.82MB </span>","children":null,"spread":false},{"title":"Dynamic-Insecurity-Risk.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"Unsupervised-ELM-Sensor.pdf <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"Generation-Company-ELM.pdf <span style='color:#111;'> 526.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"HGB-ELM-Software-Beijing2016.pdf <span style='color:#111;'> 4.02MB </span>","children":null,"spread":false},{"title":"CSO.pdf <span style='color:#111;'> 249.23KB </span>","children":null,"spread":false},{"title":"OS-ELM","children":[{"title":"HardlimActFun.m <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"SinActFun.m <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"RBFun.m <span style='color:#111;'> 287B </span>","children":null,"spread":false},{"title":"OSELM_VARY.m <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"SigActFun.m <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"OSELM.m <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"用Kriging模型预测随机优化问题适应值的PSO算法2.doc <span style='color:#111;'> 280.00KB </span>","children":null,"spread":false},{"title":"进化计算优化前向神经网络的学习方法研究_季伟东.caj <span style='color:#111;'> 9.12MB </span>","children":null,"spread":false},{"title":"ELM代码","children":[{"title":"ELM","children":[{"title":"ELM.m <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"OS-ELM","children":[{"title":"OS-ELM","children":[{"title":"HardlimActFun.m <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"SinActFun.m <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"RBFun.m <span style='color:#111;'> 287B </span>","children":null,"spread":false},{"title":"OSELM_VARY.m <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"SigActFun.m <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"OSELM.m <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"elm_kernel","children":[{"title":"elm_kernel.m <span style='color:#111;'> 7.68KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"基于RBF网络逼近的机器人自适应动态面控制方法研究_罗绍华.caj <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明