【人工智能导论大作业】基于Python的垃圾短信识别模型

上传者: 35846410 | 上传时间: 2025-10-31 00:02:31 | 文件大小: 145.47MB | 文件类型: ZIP
在人工智能领域,垃圾短信识别是一个重要的应用方向,旨在通过智能算法识别并过滤掉用户接收到的垃圾短信。随着智能手机的普及,垃圾短信问题日益严重,用户每天都会收到大量无用甚至带有诈骗性质的短信,这些短信不仅打扰人们的正常生活,还可能带来安全隐患。因此,开发一种高准确率的垃圾短信识别模型显得尤为重要。 本项目的核心是一个基于Python语言开发的模型,该模型具有交互界面,能够部署在用户的本地设备上,保证了处理数据的隐私性和安全性。模型训练所依赖的训练集数据也被包含在了提供的压缩文件中,便于用户直接使用和操作。值得注意的是,通过调整模型训练集的大小,用户可以进一步提高垃圾短信的识别准确率。这意味着用户可以根据实际情况,对训练集进行优化,以适应不同类型的垃圾短信特征。 训练集中的数据通常包含大量经过标注的短信样本,其中包含“垃圾短信”和“非垃圾短信”两种标签。模型通过学习这些样本,逐步掌握区分垃圾短信的规则和特征,进而实现对新短信的自动分类。在机器学习领域,这属于监督学习范畴。具体的算法可以是逻辑回归、支持向量机、决策树、随机森林、神经网络等。 在模型的设计与实现过程中,需要考虑多个关键因素。文本预处理是垃圾短信识别的第一步,因为短信内容通常是非结构化的自然语言文本。预处理包括分词、去除停用词、文本向量化等步骤,以便将文本数据转换为模型可以处理的数值形式。特征提取也是模型能否准确识别的关键,有效特征可能包括特定关键词的出现频率、短信长度、发送时间等。 在模型的训练过程中,还需要进行适当的调参,即调整模型的超参数,比如神经网络的层数、每层的神经元数量、学习率、批处理大小等,以达到最佳的训练效果。此外,模型还需要进行交叉验证,以评估模型的泛化能力,确保模型在未知数据上也能有良好的表现。 Python作为一种高级编程语言,在数据科学和机器学习领域具有显著的优势。其丰富的库和框架,如NumPy、Pandas、Scikit-learn、TensorFlow、Keras等,极大地方便了开发者进行数据分析和模型构建。而且,Python的语法简洁明了,易于理解和使用,对于初学者和专业人员都是一个很好的选择。 在实际部署时,可以将模型封装在一个用户友好的交互界面后端,前端可以采用Web界面或桌面应用程序的形式。用户可以通过这个界面上传新的短信样本,查询识别结果,并根据需要调整训练集和模型参数。 本项目通过提供一个基于Python的垃圾短信识别模型,不仅帮助用户有效识别和过滤垃圾短信,还通过交互界面和本地部署的方式,给予了用户高度的自主性和隐私保护。随着机器学习技术的不断发展,未来的垃圾短信识别模型有望更加智能化、高效化,为用户提供更为精准的服务。

文件下载

资源详情

[{"title":"( 2000 个子文件 145.47MB ) 【人工智能导论大作业】基于Python的垃圾短信识别模型","children":[{"title":"fortranobject.c <span style='color:#111;'> 46.36KB </span>","children":null,"spread":false},{"title":"libsvm_sparse_helper.c <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"__multiarray_api.c <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false},{"title":"libsvm_helper.c <span style='color:#111;'> 11.86KB </span>","children":null,"spread":false},{"title":"wrapmodule.c <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"liblinear_helper.c <span style='color:#111;'> 6.46KB </span>","children":null,"spread":false},{"title":"__ufunc_api.c <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"extra_avx512f_reduce.c <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"cpu_avx512_knm.c <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"cpu_popcnt.c <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"cpu_avx512_skx.c <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"cpu_avx512_icl.c <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"cpu_avx512_knl.c <span style='color:#111;'> 984B </span>","children":null,"spread":false},{"title":"extra_vsx_asm.c <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"cpu_avx512_cnl.c <span style='color:#111;'> 972B </span>","children":null,"spread":false},{"title":"cpu_avx512_spr.c <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"cpu_f16c.c <span style='color:#111;'> 890B </span>","children":null,"spread":false},{"title":"cpu_avx512_clx.c <span style='color:#111;'> 864B </span>","children":null,"spread":false},{"title":"cpu_asimd.c <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"cpu_fma3.c <span style='color:#111;'> 839B </span>","children":null,"spread":false},{"title":"cpu_vxe.c <span style='color:#111;'> 813B </span>","children":null,"spread":false},{"title":"cpu_avx.c <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"cpu_avx512cd.c <span style='color:#111;'> 779B </span>","children":null,"spread":false},{"title":"cpu_avx512f.c <span style='color:#111;'> 775B </span>","children":null,"spread":false},{"title":"cpu_avx2.c <span style='color:#111;'> 769B </span>","children":null,"spread":false},{"title":"cpu_ssse3.c <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"cpu_sse2.c <span style='color:#111;'> 717B </span>","children":null,"spread":false},{"title":"cpu_sse42.c <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"cpu_sse3.c <span style='color:#111;'> 709B </span>","children":null,"spread":false},{"title":"cpu_sse.c <span style='color:#111;'> 706B </span>","children":null,"spread":false},{"title":"cpu_sse41.c <span style='color:#111;'> 695B </span>","children":null,"spread":false},{"title":"extra_avx512bw_mask.c <span style='color:#111;'> 654B </span>","children":null,"spread":false},{"title":"cpu_vxe2.c <span style='color:#111;'> 645B </span>","children":null,"spread":false},{"title":"cpu_neon_vfpv4.c <span style='color:#111;'> 630B </span>","children":null,"spread":false},{"title":"cpu_neon.c <span style='color:#111;'> 619B </span>","children":null,"spread":false},{"title":"cpu_asimdfhm.c <span style='color:#111;'> 548B </span>","children":null,"spread":false},{"title":"extra_vsx4_mma.c <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"extra_avx512dq_mask.c <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"cpu_vsx.c <span style='color:#111;'> 499B </span>","children":null,"spread":false},{"title":"cpu_vx.c <span style='color:#111;'> 477B </span>","children":null,"spread":false},{"title":"limited_api_latest.c <span style='color:#111;'> 471B </span>","children":null,"spread":false},{"title":"cpu_asimddp.c <span style='color:#111;'> 448B </span>","children":null,"spread":false},{"title":"cpu_asimdhp.c <span style='color:#111;'> 394B </span>","children":null,"spread":false},{"title":"extra_vsx3_half_double.c <span style='color:#111;'> 366B </span>","children":null,"spread":false},{"title":"limited_api1.c <span style='color:#111;'> 363B </span>","children":null,"spread":false},{"title":"cpu_vsx4.c <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"cpu_fma4.c <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"cpu_rvv.c <span style='color:#111;'> 313B </span>","children":null,"spread":false},{"title":"cpu_sve.c <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"cpu_vsx2.c <span style='color:#111;'> 276B </span>","children":null,"spread":false},{"title":"cpu_vsx3.c <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"cpu_neon_fp16.c <span style='color:#111;'> 262B </span>","children":null,"spread":false},{"title":"cpu_xop.c <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"gfortran_vs2003_hack.c <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"test_flags.c <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":"svm.cpp <span style='color:#111;'> 70.60KB </span>","children":null,"spread":false},{"title":"linear.cpp <span style='color:#111;'> 64.17KB </span>","children":null,"spread":false},{"title":"MurmurHash3.cpp <span style='color:#111;'> 8.12KB </span>","children":null,"spread":false},{"title":"generate_umath_validation_data.cpp <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"tron.cpp <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"libsvm_template.cpp <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":"_estimator_html_repr.css <span style='color:#111;'> 11.15KB </span>","children":null,"spread":false},{"title":"libdivide.h <span style='color:#111;'> 80.29KB </span>","children":null,"spread":false},{"title":"ndarraytypes.h <span style='color:#111;'> 65.31KB </span>","children":null,"spread":false},{"title":"__multiarray_api.h <span style='color:#111;'> 61.52KB </span>","children":null,"spread":false},{"title":"npy_common.h <span style='color:#111;'> 36.74KB </span>","children":null,"spread":false},{"title":"dtype_api.h <span style='color:#111;'> 19.21KB </span>","children":null,"spread":false},{"title":"npy_math.h <span style='color:#111;'> 19.04KB </span>","children":null,"spread":false},{"title":"__ufunc_api.h <span style='color:#111;'> 13.19KB </span>","children":null,"spread":false},{"title":"ndarrayobject.h <span style='color:#111;'> 12.07KB </span>","children":null,"spread":false},{"title":"ufuncobject.h <span style='color:#111;'> 11.97KB </span>","children":null,"spread":false},{"title":"distributions.h <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"npy_3kcompat.h <span style='color:#111;'> 9.79KB </span>","children":null,"spread":false},{"title":"npy_2_compat.h <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"numpyconfig.h <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"svm.h <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"fortranobject.h <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"npy_cpu.h <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"_public_dtype_api_table.h <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"arrayscalars.h <span style='color:#111;'> 4.33KB </span>","children":null,"spread":false},{"title":"npy_1_7_deprecated_api.h <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"npy_endian.h <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"linear.h <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"halffloat.h <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"_neighborhood_iterator_imp.h <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"newrand.h <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"npy_os.h <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"utils.h <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"MurmurHash3.h <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"_numpyconfig.h <span style='color:#111;'> 902B </span>","children":null,"spread":false},{"title":"npy_2_complexcompat.h <span style='color:#111;'> 885B </span>","children":null,"spread":false},{"title":"tron.h <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"npy_no_deprecated_api.h <span style='color:#111;'> 698B </span>","children":null,"spread":false},{"title":"bitgen.h <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"_cython_blas_helpers.h <span style='color:#111;'> 474B </span>","children":null,"spread":false},{"title":"_svm_cython_blas_helpers.h <span style='color:#111;'> 226B </span>","children":null,"spread":false},{"title":"arrayobject.h <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"AUTHORS.md <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"LICENSE.md <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明