浙江大学人工智能课程课件

上传者: 35653660 | 上传时间: 2021-09-12 13:28:47 | 文件大小: 67.84MB | 文件类型: RAR
浙江大学人工智能课程课件,内容有: Introduction Problem-solving by search( 4 weeks) Uninformed Search and Informed (Heuristic) Search (1 week) Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS) Statistical learning and modeling (5 weeks) Probability Theory, Model selection, The curse of Dimensionality, Decision Theory, Information Theory Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions, Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods Linear model for regression: Linear basis function models; The Bias-Variance Decomposition Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative Models K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus Deep Learning (4 weeks) Stochastic Gradient Descent, Backpropagation Feedforward Neural Network Convolutional Neural Networks Recurrent Neural Network (LSTM, GRU) Generative adversarial network (GAN) Deep learning in NLP (word2vec), CV (localization) and VQA(cross-media) Reinforcement learning (1 weeks) Reinforcement learning: introduction

文件下载

资源详情

[{"title":"( 11 个子文件 67.84MB ) 浙江大学人工智能课程课件","children":[{"title":"AI 2018-Uninformed Search and Informed (Heuristic) Search-Fei Wu_37430 (1).pdf <span style='color:#111;'> 3.64MB </span>","children":null,"spread":false},{"title":"AI 2018-Linear Models for Regression and Classification-Fei Wu (1).pdf <span style='color:#111;'> 3.91MB </span>","children":null,"spread":false},{"title":"AI2018-CourseReview.pdf <span style='color:#111;'> 31.99MB </span>","children":null,"spread":false},{"title":"AI 2018-EM and Boosting- Fei Wu.pdf <span style='color:#111;'> 2.50MB </span>","children":null,"spread":false},{"title":"AI 2018-Deep Learning-FeiWu.pdf <span style='color:#111;'> 11.46MB </span>","children":null,"spread":false},{"title":"AI 2018-Adversarial Search (Monte-Carlo Tree Search )-Fei Wu_11438.pdf <span style='color:#111;'> 2.71MB </span>","children":null,"spread":false},{"title":"AI 2018-Statistical Learning and Modeling(Probability Distribution)-Fei Wu.pdf <span style='color:#111;'> 2.77MB </span>","children":null,"spread":false},{"title":"AI 2018-Deep Learning-Recurrent Neural Network_51474.pdf <span style='color:#111;'> 8.98MB </span>","children":null,"spread":false},{"title":"AI 2018-Adversarial Search (Minimax and Alpha-Beta Pruning)-Fei Wu_18053.pdf <span style='color:#111;'> 2.78MB </span>","children":null,"spread":false},{"title":"AI 2018-Statistical Learning and Modeling(Probability Theory Preface)-Fei Wu.pdf <span style='color:#111;'> 4.73MB </span>","children":null,"spread":false},{"title":"AI 2018-Introduction-Fei Wu_35574 (2).pdf <span style='color:#111;'> 5.35MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明