[{"title":"( 147 个子文件 49.54MB ) 我的数学建模学习笔记。包含老哥网课《Python在数学建模中的应用》代码。老哥数学建模常用的30个常用算法正在更新中。。.zip","children":[{"title":"train.csv <span style='color:#111;'> 459.73KB </span>","children":null,"spread":false},{"title":"iris.data <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"P04_数模规划类问题基本原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 1.26MB </span>","children":null,"spread":false},{"title":"P04_数模规划类问题基本原理及Python编程实现.ipynb <span style='color:#111;'> 1.26MB </span>","children":null,"spread":false},{"title":"P11_时序SVM算法原理及Python编程实现.ipynb <span style='color:#111;'> 491.82KB </span>","children":null,"spread":false},{"title":"P11_时序SVM算法原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 491.82KB </span>","children":null,"spread":false},{"title":"P10_蒙特卡洛模拟原理及Python编程实现.ipynb <span style='color:#111;'> 393.35KB </span>","children":null,"spread":false},{"title":"P08_差分方程问题原理及Python编程实现.ipynb <span style='color:#111;'> 297.04KB </span>","children":null,"spread":false},{"title":"P06_微分方程问题原理及Python编程实现.ipynb <span style='color:#111;'> 288.36KB </span>","children":null,"spread":false},{"title":"P05_数模数值逼近问题原理及Python编程实现.ipynb <span style='color:#111;'> 235.76KB </span>","children":null,"spread":false},{"title":"P05_数模数值逼近问题原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 235.76KB </span>","children":null,"spread":false},{"title":"逻辑回归模型.ipynb <span style='color:#111;'> 218.46KB </span>","children":null,"spread":false},{"title":"逻辑回归模型-checkpoint.ipynb <span style='color:#111;'> 218.46KB </span>","children":null,"spread":false},{"title":"P06_微分方程问题原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 149.32KB </span>","children":null,"spread":false},{"title":"一维二维插值模型.ipynb <span style='color:#111;'> 132.06KB </span>","children":null,"spread":false},{"title":"P08_差分方程问题原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 90.07KB </span>","children":null,"spread":false},{"title":"支持向量机模型.ipynb <span style='color:#111;'> 53.62KB </span>","children":null,"spread":false},{"title":"支持向量机模型-checkpoint.ipynb <span style='color:#111;'> 53.62KB </span>","children":null,"spread":false},{"title":"神经网络分类模型.ipynb <span style='color:#111;'> 46.21KB </span>","children":null,"spread":false},{"title":"P07_图论与回归问题原理及Python编程实现.ipynb <span style='color:#111;'> 41.91KB </span>","children":null,"spread":false},{"title":"P07_图论与回归问题原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 41.91KB </span>","children":null,"spread":false},{"title":"BP神经网络模型.ipynb <span style='color:#111;'> 34.52KB </span>","children":null,"spread":false},{"title":"K-means聚类模型-checkpoint.ipynb <span style='color:#111;'> 29.55KB </span>","children":null,"spread":false},{"title":"K-means聚类模型.ipynb <span style='color:#111;'> 29.55KB </span>","children":null,"spread":false},{"title":"P09_灰色与模糊问题原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 23.57KB </span>","children":null,"spread":false},{"title":"P09_灰色与模糊问题原理及Python编程实现.ipynb <span style='color:#111;'> 17.03KB </span>","children":null,"spread":false},{"title":"PPT图片压缩.ipynb <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"整数规划模型.ipynb <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"决策树分类模型.ipynb <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"决策树分类模型-checkpoint.ipynb <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"线性规划模型.ipynb <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"PPT图片压缩-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"P10_蒙特卡洛模拟原理及Python编程实现-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"整数规划模型-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"一维二维插值模型-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"BP神经网络模型-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"神经网络分类模型-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"线性规划模型-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"DecisionTree1.jpg <span style='color:#111;'> 64.59KB </span>","children":null,"spread":false},{"title":"DecisionTree2.jpg <span style='color:#111;'> 10.96KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 969B </span>","children":null,"spread":false},{"title":"P10_5.png <span style='color:#111;'> 942.13KB </span>","children":null,"spread":false},{"title":"P9_15.png <span style='color:#111;'> 887.78KB </span>","children":null,"spread":false},{"title":"P10_1.png <span style='color:#111;'> 776.13KB </span>","children":null,"spread":false},{"title":"P9_10.png <span style='color:#111;'> 733.77KB </span>","children":null,"spread":false},{"title":"P11_4.png <span style='color:#111;'> 705.64KB </span>","children":null,"spread":false},{"title":"P9_6.png <span style='color:#111;'> 703.28KB </span>","children":null,"spread":false},{"title":"P9_4.png <span style='color:#111;'> 660.57KB </span>","children":null,"spread":false},{"title":"P7_5.png <span style='color:#111;'> 653.83KB </span>","children":null,"spread":false},{"title":"P9_12.png <span style='color:#111;'> 645.08KB </span>","children":null,"spread":false},{"title":"P5_7.png <span style='color:#111;'> 644.48KB </span>","children":null,"spread":false},{"title":"P8_7.png <span style='color:#111;'> 640.64KB </span>","children":null,"spread":false},{"title":"P7_3.png <span style='color:#111;'> 634.02KB </span>","children":null,"spread":false},{"title":"P11_3.png <span style='color:#111;'> 630.67KB </span>","children":null,"spread":false},{"title":"P10_14.png <span style='color:#111;'> 616.79KB </span>","children":null,"spread":false},{"title":"P7_7.png <span style='color:#111;'> 596.31KB </span>","children":null,"spread":false},{"title":"P9_9.png <span style='color:#111;'> 588.24KB </span>","children":null,"spread":false},{"title":"P10_7.png <span style='color:#111;'> 588.08KB </span>","children":null,"spread":false},{"title":"P9_8.png <span style='color:#111;'> 584.06KB </span>","children":null,"spread":false},{"title":"P4_6.png <span style='color:#111;'> 583.44KB </span>","children":null,"spread":false},{"title":"P11_5.png <span style='color:#111;'> 576.25KB </span>","children":null,"spread":false},{"title":"P10_8.png <span style='color:#111;'> 574.85KB </span>","children":null,"spread":false},{"title":"P9_1.png <span style='color:#111;'> 556.77KB </span>","children":null,"spread":false},{"title":"P9_16.png <span style='color:#111;'> 553.22KB </span>","children":null,"spread":false},{"title":"P9_13.png <span style='color:#111;'> 547.90KB </span>","children":null,"spread":false},{"title":"P4_7.png <span style='color:#111;'> 547.83KB </span>","children":null,"spread":false},{"title":"P7_12.png <span style='color:#111;'> 541.01KB </span>","children":null,"spread":false},{"title":"P8_6.png <span style='color:#111;'> 539.57KB </span>","children":null,"spread":false},{"title":"P9_19.png <span style='color:#111;'> 537.56KB </span>","children":null,"spread":false},{"title":"P9_2.png <span style='color:#111;'> 531.75KB </span>","children":null,"spread":false},{"title":"P10_2.png <span style='color:#111;'> 529.12KB </span>","children":null,"spread":false},{"title":"P7_4.png <span style='color:#111;'> 524.24KB </span>","children":null,"spread":false},{"title":"P11_7.png <span style='color:#111;'> 520.71KB </span>","children":null,"spread":false},{"title":"P8_2.png <span style='color:#111;'> 508.26KB </span>","children":null,"spread":false},{"title":"P10_13.png <span style='color:#111;'> 482.47KB </span>","children":null,"spread":false},{"title":"P7_9.png <span style='color:#111;'> 481.44KB </span>","children":null,"spread":false},{"title":"P9_5.png <span style='color:#111;'> 466.02KB </span>","children":null,"spread":false},{"title":"P11_9.png <span style='color:#111;'> 462.75KB </span>","children":null,"spread":false},{"title":"P5_1.png <span style='color:#111;'> 458.68KB </span>","children":null,"spread":false},{"title":"P8_1.png <span style='color:#111;'> 458.24KB </span>","children":null,"spread":false},{"title":"P9_18.png <span style='color:#111;'> 445.98KB </span>","children":null,"spread":false},{"title":"P7_8.png <span style='color:#111;'> 443.38KB </span>","children":null,"spread":false},{"title":"P11_8.png <span style='color:#111;'> 442.17KB </span>","children":null,"spread":false},{"title":"P11_1.png <span style='color:#111;'> 438.60KB </span>","children":null,"spread":false},{"title":"P4_5.png <span style='color:#111;'> 436.21KB </span>","children":null,"spread":false},{"title":"P9_3.png <span style='color:#111;'> 433.72KB </span>","children":null,"spread":false},{"title":"P9_17.png <span style='color:#111;'> 433.26KB </span>","children":null,"spread":false},{"title":"P9_11.png <span style='color:#111;'> 426.12KB </span>","children":null,"spread":false},{"title":"P10_12.png <span style='color:#111;'> 423.33KB </span>","children":null,"spread":false},{"title":"P7_11.png <span style='color:#111;'> 413.15KB </span>","children":null,"spread":false},{"title":"P11_6.png <span style='color:#111;'> 399.16KB </span>","children":null,"spread":false},{"title":"P7_1.png <span style='color:#111;'> 397.73KB </span>","children":null,"spread":false},{"title":"P4_4.png <span style='color:#111;'> 397.49KB </span>","children":null,"spread":false},{"title":"P8_4.png <span style='color:#111;'> 386.28KB </span>","children":null,"spread":false},{"title":"P7_10.png <span style='color:#111;'> 385.66KB </span>","children":null,"spread":false},{"title":"P9_14.png <span style='color:#111;'> 374.95KB </span>","children":null,"spread":false},{"title":"P11_24.png <span style='color:#111;'> 371.87KB </span>","children":null,"spread":false},{"title":"P8_8.png <span style='color:#111;'> 368.49KB </span>","children":null,"spread":false},{"title":"P11_2.png <span style='color:#111;'> 360.12KB </span>","children":null,"spread":false},{"title":"P11_10.png <span style='color:#111;'> 346.35KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]