上传者: 34738754
|
上传时间: 2025-05-13 17:06:31
|
文件大小: 266KB
|
文件类型: DOC
在新疆巴楚县进行棉花产量预测的研究是一项涉及利用时间序列的Sentinel-2遥感数据的先进方法。研究旨在通过分析棉花吐絮期独特的冠层特征,构建新的棉铃指数(CBI),利用这一指标可以更准确地监测和预测棉花产量。研究方法包括采用随机森林(Radom Forest, RF)等监督分类器对Sentinel-2A影像进行分类,并确定棉花区域提取的最优特征。影像分类技术的选择包括随机森林模型、支持向量机(SVM)、最大似然法等,旨在比较不同分类方法的效果,以选择对棉花区域识别效果最佳的技术。
研究过程中,选取对棉花检测有利的光谱指数如NDVI(归一化植被指数)、DVI(差值植被指数)、RVI(比率植被指数)等,并对Sentinel-2A影像的光谱波段进行光谱分析,特别关注9-11月吐絮期突出的光谱波段。使用这些波段构建棉铃指数,用于棉花区域的精准识别和监测。研究中还提到,通过比较吐絮期与其他生育期棉铃指数的精度,进一步验证了棉铃指数在吐絮期的应用效果最佳。同时,精度评价指标如kappa、总体精度、用户精度也被用于评估不同分类方法的性能。
为了实现棉花种植区域的精准识别,研究采用了图像阈值分割方法。结合棉铃指数,研究者对吐絮期9-11月的棉花进行每半个月的阈值提取,最后合成棉花区域图。此方法能够观察到棉花随时间变化的开花情况,从而提高产量预测的精度。研究还计划进行2017-2023年的相关性分析,绘制棉花分布图,与统计数据进行比较,以验证预测模型的准确性。
在棉花产量预测方面,研究方案提出构建基于偏最小二乘回归模型(PLSR)的棉花产量预测模型。此模型将基于不同生育时期的棉花产量数据构建,并用于确定棉花估产的最佳时期。研究方案还建议利用无人机遥感技术等其他遥感数据源,以提高产量预测的准确性。
整体而言,这项研究是应用遥感技术于农业领域,特别是针对棉花产量预测的一次深入探索。通过时间序列遥感数据分析,结合先进的图像处理和机器学习技术,研究者能够更有效地监测作物生长,预测产量,从而为农业生产提供科学的决策支持。