traffic_sign_detect_caffe_ssd.zip

上传者: 34132426 | 上传时间: 2021-09-03 18:12:40 | 文件大小: 15.35MB | 文件类型: ZIP
基于caffe深度学习框架的squeezenet-ssd交通标志检测代码,将代码集成的pyqt中,可以对打开的图片,检测出交通标志的位置,并识别其种类。

文件下载

资源详情

[{"title":"( 36 个子文件 15.35MB ) traffic_sign_detect_caffe_ssd.zip","children":[{"title":"traffic_sign_detect_caffe_ssd","children":[{"title":"SSD_Detect.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"003381.jpg <span style='color:#111;'> 124.48KB </span>","children":null,"spread":false},{"title":"003378.jpg <span style='color:#111;'> 163.04KB </span>","children":null,"spread":false},{"title":"003389.jpg <span style='color:#111;'> 133.72KB </span>","children":null,"spread":false},{"title":"003390.jpg <span style='color:#111;'> 154.70KB </span>","children":null,"spread":false},{"title":"003386.jpg <span style='color:#111;'> 117.33KB </span>","children":null,"spread":false},{"title":"003382.jpg <span style='color:#111;'> 133.97KB </span>","children":null,"spread":false},{"title":"003392.jpg <span style='color:#111;'> 196.61KB </span>","children":null,"spread":false},{"title":"003393.jpg <span style='color:#111;'> 138.06KB </span>","children":null,"spread":false},{"title":"003375.jpg <span style='color:#111;'> 180.98KB </span>","children":null,"spread":false},{"title":"003369.jpg <span style='color:#111;'> 48.86KB </span>","children":null,"spread":false},{"title":"003396.jpg <span style='color:#111;'> 181.56KB </span>","children":null,"spread":false},{"title":"003374.jpg <span style='color:#111;'> 61.37KB </span>","children":null,"spread":false},{"title":"003397.jpg <span style='color:#111;'> 170.16KB </span>","children":null,"spread":false},{"title":"003398.jpg <span style='color:#111;'> 105.56KB </span>","children":null,"spread":false},{"title":"003394.jpg <span style='color:#111;'> 135.12KB </span>","children":null,"spread":false},{"title":"003376.jpg <span style='color:#111;'> 118.43KB </span>","children":null,"spread":false},{"title":"003379.jpg <span style='color:#111;'> 145.48KB </span>","children":null,"spread":false},{"title":"003395.jpg <span style='color:#111;'> 129.32KB </span>","children":null,"spread":false},{"title":"003385.jpg <span style='color:#111;'> 119.83KB </span>","children":null,"spread":false},{"title":"003371.jpg <span style='color:#111;'> 136.85KB </span>","children":null,"spread":false},{"title":"003373.jpg <span style='color:#111;'> 177.57KB </span>","children":null,"spread":false},{"title":"003380.jpg <span style='color:#111;'> 120.83KB </span>","children":null,"spread":false},{"title":"003388.jpg <span style='color:#111;'> 162.93KB </span>","children":null,"spread":false},{"title":"003383.jpg <span style='color:#111;'> 189.49KB </span>","children":null,"spread":false},{"title":"003384.jpg <span style='color:#111;'> 61.33KB </span>","children":null,"spread":false},{"title":"003372.jpg <span style='color:#111;'> 112.17KB </span>","children":null,"spread":false},{"title":"003387.jpg <span style='color:#111;'> 163.13KB </span>","children":null,"spread":false},{"title":"003377.jpg <span style='color:#111;'> 140.30KB </span>","children":null,"spread":false},{"title":"003370.jpg <span style='color:#111;'> 123.99KB </span>","children":null,"spread":false},{"title":"003391.jpg <span style='color:#111;'> 154.74KB </span>","children":null,"spread":false}],"spread":false},{"title":"main.py <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"squeezenet_iter_12000.caffemodel <span style='color:#111;'> 12.17MB </span>","children":null,"spread":false},{"title":"squeezenet_ssd_voc_deploy.prototxt <span style='color:#111;'> 36.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"SSD_Detect.cpython-35.pyc <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"SSD_Detect.cpython-36.pyc <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明