南京大学软件学院数据仓库与知识发现.zip

上传者: 33935895 | 上传时间: 2020-11-24 21:56:08 | 文件大小: 42.08MB | 文件类型: ZIP
包括历年真题等共42M 南京大学软件学院第一学期课程,

文件下载

资源详情

[{"title":"( 54 个子文件 42.08MB ) 南京大学软件学院数据仓库与知识发现.zip","children":[{"title":"数据仓库与知识发现","children":[{"title":"数据挖掘复习_计算题.docx <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"数据挖掘复习——20101121.doc <span style='color:#111;'> 95.00KB </span>","children":null,"spread":false},{"title":"面向贝爷的计算题整理2.docx <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"打印五.pdf <span style='color:#111;'> 223.85KB </span>","children":null,"spread":false},{"title":"打印六.pdf <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"数据挖掘复习2014.doc <span style='color:#111;'> 6.16MB </span>","children":null,"spread":false},{"title":"面向贝爷的计算题整理.docx <span style='color:#111;'> 2.17MB </span>","children":null,"spread":false},{"title":"ppt","children":[{"title":"第一章 知识发现总览.ppt <span style='color:#111;'> 338.50KB </span>","children":null,"spread":false},{"title":"第七章_聚类挖掘.ppt <span style='color:#111;'> 870.50KB </span>","children":null,"spread":false},{"title":"第六章_分类挖掘.ppt <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"第四章_特征化与区分.ppt <span style='color:#111;'> 652.00KB </span>","children":null,"spread":false},{"title":"第二章_数据仓库.ppt <span style='color:#111;'> 2.88MB </span>","children":null,"spread":false},{"title":"第三章_数据预处理.ppt <span style='color:#111;'> 601.00KB </span>","children":null,"spread":false},{"title":"第五章_关联规则挖掘.ppt <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":true},{"title":"打印四.pdf <span style='color:#111;'> 239.20KB </span>","children":null,"spread":false},{"title":"数据挖掘复习——20131121.doc <span style='color:#111;'> 120.50KB </span>","children":null,"spread":false},{"title":"~$贝爷的计算题整理.docx <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"答案","children":[{"title":"答案","children":[{"title":"img_20181124_203626.927.png <span style='color:#111;'> 244.53KB </span>","children":null,"spread":false},{"title":"img_20181124_203206.828.png <span style='color:#111;'> 367.11KB </span>","children":null,"spread":false},{"title":"img_20181124_203727.207.png <span style='color:#111;'> 189.82KB </span>","children":null,"spread":false},{"title":"img_20181124_203748.216.png <span style='color:#111;'> 66.86KB </span>","children":null,"spread":false},{"title":"img_20181124_203644.280.png <span style='color:#111;'> 147.19KB </span>","children":null,"spread":false},{"title":"img_20181124_203714.785.png <span style='color:#111;'> 166.62KB </span>","children":null,"spread":false},{"title":"img_20181124_203757.779.png <span style='color:#111;'> 202.43KB </span>","children":null,"spread":false},{"title":"img_20181124_203501.396.png <span style='color:#111;'> 527.98KB </span>","children":null,"spread":false},{"title":"img_20181124_203552.443.png <span style='color:#111;'> 271.83KB </span>","children":null,"spread":false},{"title":"img_20181124_203540.848.png <span style='color:#111;'> 125.48KB </span>","children":null,"spread":false},{"title":"img_20181124_203315.275.png <span style='color:#111;'> 275.69KB </span>","children":null,"spread":false},{"title":"img_20181124_203655.640.png <span style='color:#111;'> 165.44KB </span>","children":null,"spread":false},{"title":"img_20181124_203705.418.png <span style='color:#111;'> 198.04KB </span>","children":null,"spread":false},{"title":"img_20181124_203609.874.png <span style='color:#111;'> 178.79KB </span>","children":null,"spread":false},{"title":"img_20181124_203809.317.png <span style='color:#111;'> 63.29KB </span>","children":null,"spread":false},{"title":"img_20181124_203737.484.png <span style='color:#111;'> 100.07KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"打印三.pdf <span style='color:#111;'> 191.01KB </span>","children":null,"spread":false},{"title":"数据仓库","children":[{"title":"第6章_分类挖掘.ppt <span style='color:#111;'> 1.78MB </span>","children":null,"spread":false},{"title":"第7章_聚类挖掘.ppt <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false},{"title":"总结.md <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"第1章_知识发现总览.ppt <span style='color:#111;'> 521.00KB </span>","children":null,"spread":false},{"title":"第2章_数据仓库.ppt <span style='color:#111;'> 2.55MB </span>","children":null,"spread":false},{"title":"第4章_特征化与区分.ppt <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"第5章_关联规则挖掘.ppt <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"第3章_数据预处理.ppt <span style='color:#111;'> 997.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"数据仓库.rar <span style='color:#111;'> 3.89MB </span>","children":null,"spread":false},{"title":"K-MEANS(K均值聚类算法-C均值算法).pptx <span style='color:#111;'> 4.53MB </span>","children":null,"spread":false},{"title":"打印一.pdf <span style='color:#111;'> 430.68KB </span>","children":null,"spread":false},{"title":"数据挖掘复习.pdf <span style='color:#111;'> 312.48KB </span>","children":null,"spread":false},{"title":"数仓.pdf <span style='color:#111;'> 145.07KB </span>","children":null,"spread":false},{"title":"12-15年试卷","children":[{"title":"试卷答案.docx <span style='color:#111;'> 4.06MB </span>","children":null,"spread":false},{"title":"2012数仓试卷.pdf <span style='color:#111;'> 2.13MB </span>","children":null,"spread":false},{"title":"2015.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"2013 试卷 p2.jpg <span style='color:#111;'> 65.47KB </span>","children":null,"spread":false},{"title":"2013 试卷 p1.jpg <span style='color:#111;'> 58.82KB </span>","children":null,"spread":false},{"title":"2014.pdf <span style='color:#111;'> 131.75KB </span>","children":null,"spread":false}],"spread":false},{"title":"打印二.pdf <span style='color:#111;'> 275.57KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明