主要是多只能提强化学习的一些论文

上传者: 33328642 | 上传时间: 2022-10-13 17:05:48 | 文件大小: 35.93MB | 文件类型: RAR
我将最近几年的多智能体强化学习的研究文献下载下来,并且翻译成中文了。大家可以借鉴一下

文件下载

资源详情

[{"title":"( 31 个子文件 35.93MB ) 主要是多只能提强化学习的一些论文","children":[{"title":"Cooperative multi-agent deep reinforcement learning with counterfactual reward(multi-agent-DQN).pdf <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"Multi-agent reinforcement learning A review of challenges and applications.docx <span style='color:#111;'> 761.02KB </span>","children":null,"spread":false},{"title":"Human-level control through deep reinforcement learning.pdf <span style='color:#111;'> 4.20MB </span>","children":null,"spread":false},{"title":"QPLEX Duplex Dueling Multi-agent Q-learning.pdf <span style='color:#111;'> 2.70MB </span>","children":null,"spread":false},{"title":"Cooperative multi-agent deep reinforcement learning with counterfactual reward(multi-agent-DQN).docx <span style='color:#111;'> 258.01KB </span>","children":null,"spread":false},{"title":"A Survey of Multi-Agent Reinforcement Learning with Communication.pdf <span style='color:#111;'> 933.03KB </span>","children":null,"spread":false},{"title":"IQL-MultiAgent Cooperation and Competition with Deep Reinforcement Learning.docx <span style='color:#111;'> 56.42KB </span>","children":null,"spread":false},{"title":"Qd-learning A collaborative distributed strategy for multi-agent.pdf <span style='color:#111;'> 540.70KB </span>","children":null,"spread":false},{"title":"Dueling Network Architectures for Deep Reinforcement Learning决斗DQN.pdf <span style='color:#111;'> 736.84KB </span>","children":null,"spread":false},{"title":"Lenient Multi-Agent Deep Reinforcement Learning.pdf <span style='color:#111;'> 1014.36KB </span>","children":null,"spread":false},{"title":"Multi-agent Deep Reinforcement Learning with Extremely Noisy Observations.pdf <span style='color:#111;'> 2.87MB </span>","children":null,"spread":false},{"title":"Smart grid for industry using multi-agent reinforcement learning.docx <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"Multi-Agent Reinforcement Learning A Selective Overview of Theories and Algorithms.docx <span style='color:#111;'> 497.23KB </span>","children":null,"spread":false},{"title":"Dueling Network Architectures for Deep Reinforcement Learning决斗DQN.docx <span style='color:#111;'> 174.62KB </span>","children":null,"spread":false},{"title":"Smart grid for industry using multi-agent reinforcement learning.pdf <span style='color:#111;'> 3.39MB </span>","children":null,"spread":false},{"title":"Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving.pdf <span style='color:#111;'> 433.63KB </span>","children":null,"spread":false},{"title":"Multiagent bidirectionally-coordinated nets Emergence of human-level coordination in learning to play starcraft combat games.pdf <span style='color:#111;'> 3.46MB </span>","children":null,"spread":false},{"title":"The dynamics of reinforcement learning in cooperative multiagent systems系统协调性.pdf <span style='color:#111;'> 147.25KB </span>","children":null,"spread":false},{"title":"QMIX Monotonic Value Function Factorisation for.pdf <span style='color:#111;'> 2.68MB </span>","children":null,"spread":false},{"title":"Multi-Agent Incentive Communication via Decentralized Teammate Modeling.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"Counterfactual Multi-Agent Policy Gradients.pdf <span style='color:#111;'> 854.95KB </span>","children":null,"spread":false},{"title":"Value-Decomposition Networks For Cooperative Multi-Agent Learning.pdf <span style='color:#111;'> 6.46MB </span>","children":null,"spread":false},{"title":"QTRAN Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning.pdf <span style='color:#111;'> 922.77KB </span>","children":null,"spread":false},{"title":"IQL-MultiAgent Cooperation and Competition with Deep Reinforcement Learning.pdf <span style='color:#111;'> 2.29MB </span>","children":null,"spread":false},{"title":"Learning to communicate with deep Multi-Agent Reinforcement Learning.pdf <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"Learning to communicate with deep Multi-Agent Reinforcement Learning.docx <span style='color:#111;'> 104.68KB </span>","children":null,"spread":false},{"title":"The dynamics of reinforcement learning in cooperative multiagent systems系统协调性.docx <span style='color:#111;'> 439.80KB </span>","children":null,"spread":false},{"title":"Multi-Agent Reinforcement Learning A Selective Overview of Theories and Algorithms.pdf <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false},{"title":"Value-Decomposition Networks For Cooperative Multi-Agent Learning.docx <span style='color:#111;'> 605.06KB </span>","children":null,"spread":false},{"title":"QMIX Monotonic Value Function Factorisation for.docx <span style='color:#111;'> 251.92KB </span>","children":null,"spread":false},{"title":"Multi-agent reinforcement learning A review of challenges and applications.pdf <span style='color:#111;'> 551.17KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明