分布式深度学习论文(tensorflow的并行计算)

上传者: 28626909 | 上传时间: 2019-12-21 20:37:54 | 文件大小: 23.28MB | 文件类型: rar
大量我自己学习的时候下载以及老师给的分布式深度学习的论文,可以学习使用

文件下载

资源详情

[{"title":"( 27 个子文件 23.28MB ) 分布式深度学习论文(tensorflow的并行计算)","children":[{"title":"DSIT_DL","children":[{"title":"Park2018_Chapter_DesignOfTensorFlow-BasedProact.pdf <span style='color:#111;'> 1.70MB </span>","children":null,"spread":false},{"title":"Wu2018_Chapter_DevelopmentOfBigDataMulti-VMPl.pdf <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"ComputationSchedulingforDistributedMachineLearningwithStragglingWorkers.pdf <span style='color:#111;'> 296.71KB </span>","children":null,"spread":false},{"title":"Sequence Discriminative Distributed Training of Long Short-Term Memory.pdf <span style='color:#111;'> 292.67KB </span>","children":null,"spread":false},{"title":"Improving the Performance of Distributed TensorFlow with RDMA.pdf <span style='color:#111;'> 665.22KB </span>","children":null,"spread":false},{"title":"Large-Scale Machine Learning on Heterogeneous Distributed Systems.pdf <span style='color:#111;'> 864.24KB </span>","children":null,"spread":false},{"title":"TensorFlow Large-Scale Machine Learning on Heterogeneous Distributed Systems.pdf <span style='color:#111;'> 969.08KB </span>","children":null,"spread":false},{"title":"Revisiting Distributed Synchronous SGD.pdf <span style='color:#111;'> 722.00KB </span>","children":null,"spread":false},{"title":"A block-random algorithm for learning on distributed.pdf <span style='color:#111;'> 3.17MB </span>","children":null,"spread":false},{"title":"RPC Considered Harmful Fast Distributed Deep Learning on RDMA.pdf <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":"PARALLELIZING LINEAR RECURRENT NEURAL NETS.pdf <span style='color:#111;'> 408.76KB </span>","children":null,"spread":false},{"title":"Distributed Training Large-Scale Deep Architectures.pdf <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"Long Short-Term Memory Recurrent Neural Network Architectures.pdf <span style='color:#111;'> 418.41KB </span>","children":null,"spread":false},{"title":"Anytime Stochastic Gradient Descent A Time to Hear from all the Workers.pdf <span style='color:#111;'> 218.32KB </span>","children":null,"spread":false},{"title":"Fast Distributed Deep Learning.pdf <span style='color:#111;'> 2.38MB </span>","children":null,"spread":false},{"title":"Zou2017_Chapter_DistributedTrainingLarge-Scale.pdf <span style='color:#111;'> 816.19KB </span>","children":null,"spread":false},{"title":"Faster Asynchronous SGD.pdf <span style='color:#111;'> 801.09KB </span>","children":null,"spread":false},{"title":"Manaswi2018_Chapter_RegressionToMLPInTensorFlow.pdf <span style='color:#111;'> 978.08KB </span>","children":null,"spread":false},{"title":"基于TensorFlow分布式与前景背景分离的实时图像风格化算法_吴联坤.caa <span style='color:#111;'> 375B </span>","children":null,"spread":false},{"title":"1807.02291.pdf <span style='color:#111;'> 308.13KB </span>","children":null,"spread":false},{"title":"Ponomareva2017_Chapter_TFBoostedTreesAScalableTensorF.pdf <span style='color:#111;'> 355.49KB </span>","children":null,"spread":false},{"title":"基于多GPU的多层神经网络并行加速训练算法的研究.caj <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"基于Bi-LSTM和分布式表示的网页主题相关度计算.pdf <span style='color:#111;'> 790.76KB </span>","children":null,"spread":false},{"title":"A Compact Network Learning Model for Distribution Regression.pdf <span style='color:#111;'> 3.29MB </span>","children":null,"spread":false},{"title":"Online Training of LSTM Networks in Distributed.pdf <span style='color:#111;'> 835.61KB </span>","children":null,"spread":false},{"title":"Ketkar2017_Chapter_IntroductionToTensorflow.pdf <span style='color:#111;'> 720.42KB </span>","children":null,"spread":false},{"title":"1706.03762.pdf <span style='color:#111;'> 2.10MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明