基于Hadoop个性化推荐算法设计与实现

上传者: 28339273 | 上传时间: 2020-01-03 11:30:11 | 文件大小: 360KB | 文件类型: pdf
为了提升个性化推荐系统的大数据处理能力,选择基于用户聚类协同过滤的个性化推荐算法,并在Hadoop平台下实现算法的分布式并行化.离线状态下对用户物品矩阵降维,对用户进行聚类得到类别信息列表,对用户在类簇内进行推荐,并在相似度计算内引入物品贡献权重,最后对算法实现并行化得到推荐结果,实现基于用户聚类的分布式协同过滤推荐算法.最后对推荐结果进行测试分析,证明分布式个性化推荐有更好的推荐准确性和实时性.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明