上传者: 27595745
|
上传时间: 2021-08-08 13:07:23
|
文件大小: 657KB
|
文件类型: PDF
根据观测、调查收集到初步的样本数据集后,接下来要考虑的问题是:样本数据集的数量和质量是否满足模型构建的要求?有没有出现从未设想过的数据状态?其中有没有什么明显的规律和趋势?各因素之间有什么样的关联性?
通过检验数据集的数据质量、绘制图表、计算某些特征量等手段,对样本数据集的结构和规律进行分析的过程就是数据探索。数据探索有助于选择合适的数据预处理和建模方法,甚至可以完成一些通常由数据挖掘解决的问题。
本章从数据质量分析和数据特征分析两个角度对数据进行探索。
6.1 数据质量分析
数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据,脏数据一般是指不符合要求,以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括:
缺失值
异常值
不一致的值
重复数据及含有特殊符号(如#、¥、*)的数据
本小节将主要对数据中的缺失值、异常值和一致性进行分析。
6.1.1缺失值分析
数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果的不准确,以下从缺失值产生的原因及影响等方面展开分析。
(1) 缺失值产生的原因
1) 有些信息暂时无法获取,或者获取信息的代价太大。
2) 有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的