仿生智能算法 机器学习技术 遗传算法 基础理论原理讲解 共34页.ppt

上传者: 27595745 | 上传时间: 2021-09-14 18:08:41 | 文件大小: 209KB | 文件类型: PPT
【概述】 遗传算法是一种大致基于模拟进化的学习方法 假设通常被描述为二进制位串,也可以是符号表达式或计算机程序 搜索合适的假设从若干初始假设的群体或集合开始 当前群体的成员通过模拟生物进化的方式来产生下一代群体,比如随机变异和交叉 每一步,根据给定的适应度评估当前群体中的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子 遗传算法已被成功用于多种学习任务和最优化问题中,比如学习机器人控制的规则集和优化人工神经网络的拓扑结构和学习参数 本章主要介绍了基于位串描述假设的遗传算法和基于计算机程序描述假设的遗传编程 【动机】 遗传算法(GA)是一种受生物进化启发的学习方法,它不再是从一般到特殊或从简单到复杂地搜索假设,而是通过变异和重组当前已知的最好假设来生成后续的假设 每一步,更新被称为当前群体的一组假设,方法是使用当前适应度最高的假设的后代替代群体的某个部分 这个过程形成了假设的生成测试的柱状搜索,其中若干个最佳当前假设的变体最有可能在下一步被考虑

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明