常用机器学习算法的简单手写实现,帮助更好理解算法

上传者: 19309473 | 上传时间: 2022-04-27 11:05:49 | 文件大小: 341KB | 文件类型: ZIP
常用机器学习算法的简单手写实现,帮助更好理解算法

文件下载

资源详情

[{"title":"( 43 个子文件 341KB ) 常用机器学习算法的简单手写实现,帮助更好理解算法","children":[{"title":"ML_gzh","children":[{"title":"DecisionTree","children":[{"title":"utils.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"search_feature.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-37.pyc <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 164B </span>","children":null,"spread":false},{"title":"analyse_tree.cpython-37.pyc <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"base.cpython-37.pyc <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"best_split_regressor.cpython-37.pyc <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"best_split_classfier.cpython-37.pyc <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"split_data.cpython-37.pyc <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"ML_DecisionTree.cpython-37.pyc <span style='color:#111;'> 8.17KB </span>","children":null,"spread":false},{"title":"search_feature.cpython-37.pyc <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"split_data.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"ML_decisionTree.py <span style='color:#111;'> 11.37KB </span>","children":null,"spread":false},{"title":"best_split_regressor.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"best_split_classfier.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"analyse_tree.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"Cluster","children":[{"title":"GaussianCluster.py <span style='color:#111;'> 9.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"LogisticRegression","children":[{"title":"ML_LogisticRegression.py <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"Quasi_Newton.py <span style='color:#111;'> 9.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"Perceptron","children":[{"title":"ML_Perceptron.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"Bayes","children":[{"title":"ML_NaiveBayes.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"Semi_NaiveBayes.py <span style='color:#111;'> 19.08KB </span>","children":null,"spread":false},{"title":"Nbayes.py <span style='color:#111;'> 10.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"utils.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-37.pyc <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"loss_functions.cpython-37.pyc <span style='color:#111;'> 7.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"loss_functions.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"LinearDiscriminantAnalysis","children":[{"title":"ML_LinearDiscriminantAnalysis.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"KNN_kdTree","children":[{"title":"ML_KNN.py <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"KNN.py <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"Ensemble","children":[{"title":"__pycache__","children":[{"title":"loss_functions.cpython-37.pyc <span style='color:#111;'> 537B </span>","children":null,"spread":false}],"spread":true},{"title":"ML_GradientBoostingTree.py <span style='color:#111;'> 8.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"FeatureEngineer","children":[{"title":"data","children":[{"title":"train_subset.csv <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"FE_CategoricalVar_Small.py <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"FE_CategoricalVar_Large.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"Net","children":[{"title":"ML_SOMNet.py <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false},{"title":"ML_BPNet.py <span style='color:#111;'> 10.34KB </span>","children":null,"spread":false},{"title":"somSet.txt <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"dataSet_BP.txt <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"ML_RBFNet.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"LinearRegression","children":[{"title":"ML_LinearRegression.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明