cfd流体计算方法1122

上传者: 18926435 | 上传时间: 2023-05-18 22:05:30 | 文件大小: 3.04MB | 文件类型: ZIP
CFD
计算流体力学,自由表面波,湍流,粒子类方法,无网格方法,SPH,smoothed particle method

文件下载

资源详情

[{"title":"( 298 个子文件 3.04MB ) cfd流体计算方法1122","children":[{"title":"common.2D <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"precision_FB.2D <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"precision_xz.2D <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"precision_dr.2D <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"precision_kind.2D <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"export2.avi <span style='color:#111;'> 3.85MB </span>","children":null,"spread":false},{"title":"export.avi <span style='color:#111;'> 3.85MB </span>","children":null,"spread":false},{"title":"Staircase2D_Monaghan.dsp <span style='color:#111;'> 42.51KB </span>","children":null,"spread":false},{"title":"Staircase2D_Monaghan.dsw <span style='color:#111;'> 565B </span>","children":null,"spread":false},{"title":"DT <span style='color:#111;'> 14.31KB </span>","children":null,"spread":false},{"title":"ENERGY <span style='color:#111;'> 26.27KB </span>","children":null,"spread":false},{"title":"EPART <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"Staircase2D_Monaghan.exe <span style='color:#111;'> 924.10KB </span>","children":null,"spread":false},{"title":"getdata_2D.f <span style='color:#111;'> 26.92KB </span>","children":null,"spread":false},{"title":"monaghanBC_FloatingBodies_AngMomCorrection_2D.f <span style='color:#111;'> 20.66KB </span>","children":null,"spread":false},{"title":"1_FloatingBodies_Particles.f <span style='color:#111;'> 14.56KB </span>","children":null,"spread":false},{"title":"1_SPHYSICSgen_2D.f <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"approx_RiemannSolver_NonConservative_2D.f <span style='color:#111;'> 13.47KB </span>","children":null,"spread":false},{"title":"approx_RiemannSolver_Conservative_2D.f <span style='color:#111;'> 13.39KB </span>","children":null,"spread":false},{"title":"1_fill_part.f <span style='color:#111;'> 13.28KB </span>","children":null,"spread":false},{"title":"self_BC_Monaghan_FloatingBodies_RiemannConservative_2D.f <span style='color:#111;'> 12.66KB </span>","children":null,"spread":false},{"title":"1_tocompile_cvf.f <span style='color:#111;'> 12.21KB </span>","children":null,"spread":false},{"title":"celij_BC_Monaghan_FloatingBodies_RiemannConservative_2D.f <span style='color:#111;'> 11.80KB </span>","children":null,"spread":false},{"title":"1_tocompile_gfortran.f <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"self_BC_Monaghan_FloatingBodies_RiemannNonConservative_2D.f <span style='color:#111;'> 10.96KB </span>","children":null,"spread":false},{"title":"celij_BC_Monaghan_FloatingBodies_RiemannNonConservative_2D.f <span style='color:#111;'> 10.87KB </span>","children":null,"spread":false},{"title":"1_tocompile_ifort.f <span style='color:#111;'> 10.82KB </span>","children":null,"spread":false},{"title":"celij_BC_Monaghan_FloatingBodies_2D.f <span style='color:#111;'> 10.44KB </span>","children":null,"spread":false},{"title":"self_BC_Monaghan_FloatingBodies_2D.f <span style='color:#111;'> 10.44KB </span>","children":null,"spread":false},{"title":"1_tocompile_ftn95.f <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"1_box.f <span style='color:#111;'> 9.34KB </span>","children":null,"spread":false},{"title":"1_beach.f <span style='color:#111;'> 9.11KB </span>","children":null,"spread":false},{"title":"self_BC_Monaghan_RiemannConservative_2D.f <span style='color:#111;'> 9.09KB </span>","children":null,"spread":false},{"title":"monaghanBC_AngMomCorrection_2D.f <span style='color:#111;'> 8.77KB </span>","children":null,"spread":false},{"title":"celij_BC_Monaghan_RiemannConservative_2D.f <span style='color:#111;'> 8.43KB </span>","children":null,"spread":false},{"title":"1_trapezoid.f <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"step_predictor_corrector_2D.f <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"self_BC_Monaghan_RiemannNonConservative_2D.f <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"1_obstacle.f <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"step_symplectic_2D.f <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"celij_BC_Monaghan_RiemannNonConservative_2D.f <span style='color:#111;'> 7.59KB </span>","children":null,"spread":false},{"title":"step_beeman_2D.f <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false},{"title":"1_wavemaker.f <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"rigid_body_motion_Conservative_2D.f <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"step_predictor_corrector_Conservative_2D.f <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"rigid_body_motion_2D.f <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"celij_BC_Dalrymple_FloatingBodies_2D.f <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"SPHYSICS_2D.f <span style='color:#111;'> 7.24KB </span>","children":null,"spread":false},{"title":"celij_BC_Monaghan_2D.f <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"self_BC_Monaghan_2D.f <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false},{"title":"self_BC_Dalrymple_FloatingBodies_2D.f <span style='color:#111;'> 6.98KB </span>","children":null,"spread":false},{"title":"step_symplectic_Conservative_2D.f <span style='color:#111;'> 6.93KB </span>","children":null,"spread":false},{"title":"monaghanBC_FloatingBodies_2D.f <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"divide_2D.f <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"celij_BC_Dalrymple_2D.f <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"self_BC_Dalrymple_2D.f <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"monaghanBC_2D.f <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false},{"title":"ac_KGC_2D.f <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"1_RaichlenWedge_Particles.f <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"densityFilter_MLS_2D.f <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"step_verlet_2D.f <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"check_limits_2D.f <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"updateNormals_2D.f <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"LU_decomposition_2D.f <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"ac_Conservative_2D.f <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"movingPaddle_2D.f <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"pre_celij_MLS_2D.f <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"pre_self_MLS_2D.f <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"ac_2D.f <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"ac_Shepard_2D.f <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"ac_MLS_2D.f <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"gradients_calc_Conservative_2D.f <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"1_boundaries_bottom2.f <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"1_boundaries_bottom.f <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"1_ac_dr_check.f <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"BCF_Monaghan_riemann2.f <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"BCF_Monaghan_riemann.f <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"1_bd_bottom.f <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"1_bd_bottom2.f <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"pre_self_KGC_2D.f <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"pre_celij_KGC_2D.f <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"BC_Monaghan_riemann2.f <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"BCF_Monaghan_NOriemann.f <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"BCF_Dalrymple.f <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"BC_Monaghan_riemann.f <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"pre_celij_Shepard_2D.f <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"pre_self_Shepard_2D.f <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"BC_Monaghan_NOriemann.f <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"BC_Dalrymple.f <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"1_boundaries_right2.f <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"1_boundaries_right.f <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"limiter_betaMinMod_2D.f <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"1_boundaries_left2.f <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"1_normals_Calc_2D.f <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"viscosity_laminar+SPS_2D.f <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"1_boundaries_left.f <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"1_periodicityCheck.f <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"correct_SPS_2D.f <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"gradients_calc_basic_2D.f <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"1_position_check.f <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明