自然语言处理,深度学习 代码

上传者: python__reported | 上传时间: 2022-05-23 11:36:49 | 文件大小: 6.87MB | 文件类型: 7Z
围绕自然语言处理和时序数据处理,介绍中的重要技术,包括word2vec、RNN、LSTM、GRU、seq2seq 和Attention 等。语言平实,结合大量示意图和Python代码,按照“提出问题”“思考解决问题的新方法”“加以改善”的流程,基于解决自然语言处理相关的各种问题,使读者在此过程中更深入地理解中的重要技术。

文件下载

资源详情

[{"title":"( 62 个子文件 6.87MB ) 自然语言处理,深度学习 代码","children":[{"title":"【源代码】深度学习进阶:自然语言处理","children":[{"title":"ch03","children":[{"title":"simple_cbow.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"cbow_predict.py <span style='color:#111;'> 499B </span>","children":null,"spread":false},{"title":"simple_skip_gram.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 902B </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"sequence.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ptb.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"addition.txt <span style='color:#111;'> 634.77KB </span>","children":null,"spread":false},{"title":"spiral.py <span style='color:#111;'> 648B </span>","children":null,"spread":false},{"title":"date.txt <span style='color:#111;'> 1.96MB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ch04","children":[{"title":"negative_sampling_layer.py <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"cbow.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"cbow_params.pkl <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"skip_gram.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch05","children":[{"title":"simple_rnnlm.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"train_custom_loop.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 829B </span>","children":null,"spread":false}],"spread":true},{"title":"ch02","children":[{"title":"count_method_small.py <span style='color:#111;'> 631B </span>","children":null,"spread":false},{"title":"ppmi.py <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"similarity.py <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"count_method_big.py <span style='color:#111;'> 887B </span>","children":null,"spread":false},{"title":"show_ptb.py <span style='color:#111;'> 484B </span>","children":null,"spread":false},{"title":"most_similar.py <span style='color:#111;'> 335B </span>","children":null,"spread":false}],"spread":true},{"title":"ch08","children":[{"title":"AttentionSeq2seq.pkl <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"attention_layer.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"visualize_attention.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"attention_seq2seq.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"common","children":[{"title":"trainer.py <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"time_layers.py <span style='color:#111;'> 16.18KB </span>","children":null,"spread":false},{"title":"functions.py <span style='color:#111;'> 772B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"np.py <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch07","children":[{"title":"generate_text.py <span style='color:#111;'> 601B </span>","children":null,"spread":false},{"title":"show_addition_dataset.py <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"peeky_seq2seq.py <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"rnnlm_gen.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"generate_better_text.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"train_seq2seq.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"seq2seq.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch01","children":[{"title":"two_layer_net.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"forward_net.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"train_custom_loop.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"show_spiral_dataset.py <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 569B </span>","children":null,"spread":false}],"spread":true},{"title":"ch06","children":[{"title":"Rnnlm.pkl <span style='color:#111;'> 3.99MB </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"train_rnnlm.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"rnnlm.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"train_better_rnnlm.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"clip_grads.py <span style='color:#111;'> 494B </span>","children":null,"spread":false},{"title":"better_rnnlm.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"rnn_gradient_graph.py <span style='color:#111;'> 581B </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明