Mastering-Big-Data-Analytics-with-PySpark-master.zip

上传者: policy123 | 上传时间: 2021-08-26 09:11:54 | 文件大小: 318KB | 文件类型: ZIP
Gain a solid knowledge of vital Data Analytics concepts via practical use cases Create elegant data visualizations using Jupyter Run, process, and analyze large chunks of datasets using PySpark Utilize Spark SQL to easily load big data into DataFrames Create fast and scalable Machine Learning applications using MLlib with Spark Perform exploratory Data Analysis in a scalable way Achieve scalable, high-throughput and fault-tolerant processing of data streams using Spark Streaming

文件下载

资源详情

[{"title":"( 49 个子文件 318KB ) Mastering-Big-Data-Analytics-with-PySpark-master.zip","children":[{"title":"Mastering-Big-Data-Analytics-with-PySpark-master","children":[{"title":".gitignore <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"run_me.py <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false},{"title":"requirements_notebook.txt <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 154B </span>","children":null,"spread":false},{"title":"Section 4 - Machine Learning with Spark MLlib","children":[{"title":"4.3","children":[{"title":"hands-on-4.3.ipynb <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.4","children":[{"title":"hands-on-4.4.ipynb <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"download_data.py <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"Section 1 - Python and Spark a match made in heaven","children":[{"title":"hello_world.ipynb <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"Section 8 - Machine Learning in Real-Time","children":[{"title":"8.4","children":[{"title":"streaming_sentiment_app.ipynb <span style='color:#111;'> 10.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"8.3","children":[{"title":"structured_streaming.ipynb <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"twitter_app","children":[{"title":"twitter_app.ipynb <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"twitter_data.zip <span style='color:#111;'> 86.90KB </span>","children":null,"spread":false},{"title":"secrets.py <span style='color:#111;'> 743B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Section 5 - Classification and Regression","children":[{"title":"5.4","children":[{"title":"pyspark.ml.features.ipynb <span style='color:#111;'> 17.56KB </span>","children":null,"spread":false},{"title":"pyspark.ml.parameters.ipynb <span style='color:#111;'> 25.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"5.1","children":[{"title":"ml.source.libsvm.ipynb <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"ml.images.ipynb <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"ml.linalg.ipynb <span style='color:#111;'> 6.64KB </span>","children":null,"spread":false},{"title":"data-mllib.yaml <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"data-mllib.ipynb <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"5.3","children":[{"title":"hands-on.ipynb <span style='color:#111;'> 11.90KB </span>","children":null,"spread":false}],"spread":false},{"title":"5.5","children":[{"title":"pyspark.ml.fpm.ipynb <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"pyspark.ml.stat.ipynb <span style='color:#111;'> 17.64KB </span>","children":null,"spread":false},{"title":"pyspark.ml.tuning.ipynb <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"Section 9 - The Power Of PySpark","children":[{"title":"packaged_application_example","children":[{"title":"setup.py <span style='color:#111;'> 161B </span>","children":null,"spread":false},{"title":"README.ipynb <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"jobs","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"hello_world_job.py <span style='color:#111;'> 121B </span>","children":null,"spread":false}],"spread":false},{"title":"main.py <span style='color:#111;'> 70B </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 980B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"Section 2 - Working with PySpark","children":[{"title":"2.5","children":[{"title":"2.5 - Spark Data Operations.ipynb <span style='color:#111;'> 244.84KB </span>","children":null,"spread":false},{"title":"2.5 - Spark Data Operations.html <span style='color:#111;'> 482.84KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"Section 6 - Analyzing Big Data","children":[{"title":"6.4","children":[{"title":"hands-on-6.4.ipynb <span style='color:#111;'> 18.30KB </span>","children":null,"spread":false},{"title":"model_training.ipynb <span style='color:#111;'> 24.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"6.3","children":[{"title":"hands-on-6.3.ipynb <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"data_wrangling.ipynb <span style='color:#111;'> 26.30KB </span>","children":null,"spread":false}],"spread":false},{"title":"6.2","children":[{"title":"data_exploration.ipynb <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"hands-on-6.2.ipynb <span style='color:#111;'> 20.70KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"conf","children":[{"title":"data_sets.conf <span style='color:#111;'> 597B </span>","children":null,"spread":false}],"spread":false},{"title":"Section 3 - Preparing Data using SparkSQL","children":[{"title":"3.5","children":[{"title":"PySpark SQL Functions - Cheatsheet.ipynb <span style='color:#111;'> 436.10KB </span>","children":null,"spread":false}],"spread":false},{"title":"3.2","children":[{"title":"hands-on-3.2.ipynb <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"3.4","children":[{"title":"join_types.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"3.1","children":[{"title":"loading_data_from_a_csv_file.ipynb <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"3.3","children":[{"title":"hands-on-3.3.ipynb <span style='color:#111;'> 10.40KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明