[{"title":"( 19 个子文件 27.5MB ) 哈尔滨工程大学矩阵论课件PPT","children":[{"title":"线性空间与矩阵论第1至第5章","children":[{"title":"4-2Hermite矩阵与Hermite二次型新.ppt <span style='color:#111;'> 2.32MB </span>","children":null,"spread":false},{"title":"2-2 标准正交基与向量的正交化.ppt <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"2-6向量范数与矩阵范数的相容性.ppt <span style='color:#111;'> 3.06MB </span>","children":null,"spread":false},{"title":"5-7矩阵的极分解.ppt <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"2-5 矩阵范数.ppt <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"5-1矩阵的三角分解.ppt <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"5-3矩阵的正交三角分解 .ppt <span style='color:#111;'> 1.39MB </span>","children":null,"spread":false},{"title":"4-3幂等阵与幂零阵新.ppt <span style='color:#111;'> 2.06MB </span>","children":null,"spread":false},{"title":"5-5矩阵的奇异值分解.ppt <span style='color:#111;'> 1.64MB </span>","children":null,"spread":false},{"title":"5-6单纯矩阵的谱分解.ppt <span style='color:#111;'> 2.02MB </span>","children":null,"spread":false},{"title":"第三章 10-8.ppt <span style='color:#111;'> 2.41MB </span>","children":null,"spread":false},{"title":"5-2矩阵的满秩分解 .ppt <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"4-1 单纯矩阵.ppt <span style='color:#111;'> 2.41MB </span>","children":null,"spread":false},{"title":"2-4 向量范数.ppt <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"第一章 线性空间.ppt <span style='color:#111;'> 4.54MB </span>","children":null,"spread":false},{"title":"第三章 线性映射与线性变换(改改).ppt <span style='color:#111;'> 3.42MB </span>","children":null,"spread":false},{"title":"5-4.方阵的若当分解.ppt <span style='color:#111;'> 2.95MB </span>","children":null,"spread":false},{"title":"2-1 内积空间.ppt <span style='color:#111;'> 1.78MB </span>","children":null,"spread":false},{"title":"2-3 正交子空间 .ppt <span style='color:#111;'> 1.81MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]