RVM 1.3 for MATLAB.zip

上传者: m1m2m3mmm | 上传时间: 2021-09-15 21:01:13 | 文件大小: 1.07MB | 文件类型: ZIP
Relevance Vector Machine(相关向量机)即RVM, 引入了贝叶斯方法,提供后验概率的输出,并且常常能产生更稀疏的解(在测试集上预测时速度更快)。SVM常常需要用交叉验证的方法确定模型复杂度参数C,而对于RVM来说,引入贝叶斯方法的另一个好处就是,省去了模型选择这一步。但RVM由于求矩阵的逆的运算,常常需要更多的训练时间。

文件下载

资源详情

[{"title":"( 36 个子文件 1.07MB ) RVM 1.3 for MATLAB.zip","children":[{"title":"RVM-MATLAB-V1.3","children":[{"title":"KernnelMatrix","children":[{"title":"KernelLinear.m <span style='color:#111;'> 836B </span>","children":null,"spread":false},{"title":"KernelPolynomial.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"KernelLaplacian.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"KernelBase.m <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"KernelExponential.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"KernelGaussian.m <span style='color:#111;'> 993B </span>","children":null,"spread":false},{"title":"Kernel.m <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"KernelSigmoid.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"KernelFunction.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"func","children":[{"title":"rvm_test.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"plotResult.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"rvm_train.m <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"computePretIndex.m <span style='color:#111;'> 895B </span>","children":null,"spread":false},{"title":"plotRelevanceVector.m <span style='color:#111;'> 978B </span>","children":null,"spread":false},{"title":"generateData.m <span style='color:#111;'> 905B </span>","children":null,"spread":false}],"spread":true},{"title":"SB2_Release_200","children":[{"title":"SB2_Initialisation.m <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false},{"title":"SB2_PreProcessBasis.m <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"SB2_Diagnostic.m <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"SparseBayes.m <span style='color:#111;'> 24.68KB </span>","children":null,"spread":false},{"title":"Readme.txt <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"SB2_FormatTime.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"SB2_ParameterSettings.m <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"SB2_Sigmoid.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"licence.txt <span style='color:#111;'> 15.04KB </span>","children":null,"spread":false},{"title":"SB2_PosteriorMode.m <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false},{"title":"SB2_Likelihoods.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"SB2_UserOptions.m <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"SB2_ControlSettings.m <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"SparseBayesDemo.m <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"SB2_Manual.pdf <span style='color:#111;'> 130.25KB </span>","children":null,"spread":false},{"title":"SB2_FullStatistics.m <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false}],"spread":false},{"title":"demo_RVM.m <span style='color:#111;'> 546B </span>","children":null,"spread":false},{"title":"demo_KernelMatrix.m <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"说明.txt <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"refs","children":[{"title":"Tipping_2001_Sparse Bayesian learning and the relevance vector machine.pdf <span style='color:#111;'> 935.64KB </span>","children":null,"spread":false},{"title":"Tipping_Faul_2003_Fast marginal likelihood maximisation for sparse Bayesian models.pdf <span style='color:#111;'> 222.86KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明