《基于YOLOv8的智慧社区老人独居异常行为监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

上传者: m0_65481401 | 上传时间: 2025-12-05 21:32:46 | 文件大小: 24.21MB | 文件类型: ZIP
《基于YOLOv8的智慧社区老人独居异常行为监测系统》是一项结合了计算机视觉技术和智能监控的创新项目,旨在通过高效准确地识别和分析老人在社区中的行为模式,为独居老人的安全生活提供保障。该系统的核心是YOLOv8(You Only Look Once Version 8),一种先进的实时目标检测算法,以其快速准确的检测能力在计算机视觉领域受到广泛认可。 该系统包含了完整的源代码,这意味着开发者可以深入理解系统的运作机制,并根据具体需求进行自定义和优化。可视化界面的提供,使得操作人员可以直观地监控老人的行为状态,及时发现异常情况。此外,系统附带的完整数据集为模型训练提供了丰富多样的样本,保证了监测系统的准确性和泛化能力。 部署教程的包含,极大地降低了系统部署的技术门槛,使非专业人员也能够轻松部署和运行该系统。这不仅为老人家属提供了便利,也使得学校中的学生能够将其作为毕业设计或课程设计的项目,进行实践操作和深入研究。 该系统的工作流程大致可以分为以下几个步骤:摄像头捕捉到的视频流会被实时传输至系统;随后,YOLOv8算法对视频流中的图像进行处理,以高准确度识别和分类视频中的老人行为;接着,系统将识别出的行为数据与正常行为模式进行对比分析;一旦发现异常行为,系统将通过可视化界面给予警报,并将相关信息通知给指定的监护人或管理人员。 系统的优势在于其基于YOLOv8算法的实时性和高准确性,能够大大减少误报和漏报的情况。此外,系统通过提供源码和详细的部署教程,使得系统具有良好的可扩展性和适应性,能够根据不同的社区环境和老人的具体行为特征进行调整和优化。可视化页面的设计则让监控更加直观,便于操作人员做出快速反应。 此外,系统能够收集和分析独居老人的行为数据,为研究老年人行为特征、改善社区服务提供了宝贵的参考。同时,对于独居老人来说,这样的监测系统能够在很大程度上减少他们的安全风险,为他们提供更为安心的生活环境。 值得注意的是,该系统的部署和应用需要考虑数据隐私和安全问题。在收集和处理老人的视频数据时,必须严格遵守相关法律法规,确保老人的个人隐私不被侵犯。同时,系统的设计应充分考虑老人的隐私需求,尽可能使用非侵入式的监测方法。 《基于YOLOv8的智慧社区老人独居异常行为监测系统》是一个集先进技术、实用功能和人性化设计于一体的综合性解决方案,不仅能够为独居老人的安全保驾护航,还能为相关领域的研究提供技术支持,具有广泛的应用价值和市场前景。该系统将成为未来智慧社区建设中的一个重要组成部分,对提高老年人的生活质量和安全保障具有重要意义。

文件下载

资源详情

[{"title":"( 97 个子文件 24.21MB ) 《基于YOLOv8的智慧社区老人独居异常行为监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip","children":[{"title":"可视化页面设计","children":[{"title":"main.py <span style='color:#111;'> 14.27KB </span>","children":null,"spread":false},{"title":"five_type_det_service.py <span style='color:#111;'> 9.59KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 16.63KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 14.23KB </span>","children":null,"spread":false},{"title":"myutil.py <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 45.87KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 22.33KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"myutil.cpython-39.pyc <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"plots.cpython-39.pyc <span style='color:#111;'> 19.75KB </span>","children":null,"spread":false},{"title":"general.cpython-39.pyc <span style='color:#111;'> 37.90KB </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-39.pyc <span style='color:#111;'> 16.38KB </span>","children":null,"spread":false},{"title":"metrics.cpython-39.pyc <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"augmentations.cpython-39.pyc <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"dataloaders.cpython-39.pyc <span style='color:#111;'> 41.95KB </span>","children":null,"spread":false},{"title":"downloads.cpython-39.pyc <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 53.84KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false}],"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 275B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"zjiaxiao.iml <span style='color:#111;'> 477B </span>","children":null,"spread":false}],"spread":true},{"title":"abnoenal_video_five_type_test","children":[{"title":"gB_9_s5_2019-03-07T16;31;48+01;00_rgb_body_005.mp4 <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"best.pt <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false}],"spread":true},{"title":"my_func.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"detect.cpython-39.pyc <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"five_type_det_service.cpython-39.pyc <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"my_func.cpython-39.pyc <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"config","children":[{"title":"rtmdet_m_8xb32-300e_coco.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50_fpn_2x_coco.py <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false},{"title":"_base_","children":[{"title":"default_runtime.py <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"schedules","children":[{"title":"schedule_2x.py <span style='color:#111;'> 815B </span>","children":null,"spread":false},{"title":"schedule_1x.py <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"schedule_20e.py <span style='color:#111;'> 816B </span>","children":null,"spread":false}],"spread":false},{"title":"datasets","children":[{"title":"dsdl.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"isaid_instance.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"ade20k_instance.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"objects365v1_detection.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"cityscapes_instance.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"voc0712.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"coco_semantic.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"mot_challenge.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"wider_face.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"coco_caption.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"coco_wholebody.py <span style='color:#111;'> 30.01KB </span>","children":null,"spread":false},{"title":"youtube_vis.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"semi_coco_detection.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"deepfashion.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"mot_challenge_reid.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"refcoco.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"coco_panoptic.py <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"ade20k_panoptic.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"coco_instance.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"coco_instance_semantic.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"refcocog.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"refcoco+.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"lvis_v0.5_instance.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"coco_detection.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"ade20k_semantic.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"lvis_v1_instance.py <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"cityscapes_detection.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"objects365v2_detection.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"mot_challenge_det.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"openimages_detection.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"v3det.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false}],"spread":false},{"title":"models","children":[{"title":"fast-rcnn_r50_fpn.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"rpn_r50-caffe-c4.py <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"cascade-mask-rcnn_r50_fpn.py <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"mask-rcnn_r50_fpn.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"cascade-rcnn_r50_fpn.py <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"ssd300.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"retinanet_r50_fpn.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"rpn_r50_fpn.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50-caffe-dc5.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50_fpn.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50-caffe-c4.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"mask-rcnn_r50-caffe-c4.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"rtmpose-m_8xb64-270e_coco-wholebody-256x192.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"UI","children":[{"title":"icon.ico <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"模型训练","children":[{"title":"yolov8n.pt <span style='color:#111;'> 6.25MB </span>","children":null,"spread":false},{"title":"best.pt <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false},{"title":"Detection_video.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"yolo11n.pt <span style='color:#111;'> 5.35MB </span>","children":null,"spread":false},{"title":"train_mode.py <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.txt <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"基于YOLOv8的智慧社区老人独居异常行为监测系统946a9fa6b73647f2bffdc4b17fda945b.txt <span style='color:#111;'> 217B </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明