《基于YOLOv8的智慧校园电动车超速监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

上传者: m0_65481401 | 上传时间: 2025-11-06 22:11:55 | 文件大小: 24.21MB | 文件类型: ZIP
《基于YOLOv8的智慧校园电动车超速监测系统》是一款集成了最新YOLOv8算法的电动车超速检测系统。YOLOv8作为YOLO(You Only Look Once)系列算法的最新版本,以其快速和准确的特性在目标检测领域享有盛誉。本系统利用YOLOv8强大的实时图像处理能力,对校园内的电动车进行实时监测,能够有效识别并记录超速行驶的行为。系统的特点在于其简单部署和易用性,即使是技术初学者也能够快速上手,非常适合作为毕业设计或课程设计的项目。 系统的主要组成部分包括源码、可视化界面以及完整的数据集。源码部分提供了系统运行的核心代码,允许用户深入理解和定制系统功能。可视化界面则为用户提供了一个直观的操作平台,使得监测电动车超速的过程变得简单明了。而完整数据集则为模型训练提供了必要的训练样本,保障了监测系统的准确性。 在部署方面,该系统附带了详细的部署教程,使得安装和配置过程简单便捷。用户只需按照教程进行操作,即可快速完成系统的搭建。此外,模型训练部分也为希望深入研究或对系统进行扩展的用户提供了一个起点,用户可以根据自己的需求对模型进行再训练,以提高系统的适应性和准确性。 《基于YOLOv8的智慧校园电动车超速监测系统》以其高度集成、操作便捷、功能完善的特点,不仅能够有效服务于校园安全管理,还能为学习人工智能、计算机视觉和机器学习的人员提供一个很好的实践平台。无论是对于学校还是学习者而言,本系统都是一项具有较高实用价值的技术创新。

文件下载

资源详情

[{"title":"( 97 个子文件 24.21MB ) 《基于YOLOv8的智慧校园电动车超速监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip","children":[{"title":"可视化页面设计","children":[{"title":"main.py <span style='color:#111;'> 14.27KB </span>","children":null,"spread":false},{"title":"five_type_det_service.py <span style='color:#111;'> 9.59KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 16.63KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 14.23KB </span>","children":null,"spread":false},{"title":"myutil.py <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 45.87KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 22.33KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"myutil.cpython-39.pyc <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"plots.cpython-39.pyc <span style='color:#111;'> 19.75KB </span>","children":null,"spread":false},{"title":"general.cpython-39.pyc <span style='color:#111;'> 37.90KB </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-39.pyc <span style='color:#111;'> 16.38KB </span>","children":null,"spread":false},{"title":"metrics.cpython-39.pyc <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"augmentations.cpython-39.pyc <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"dataloaders.cpython-39.pyc <span style='color:#111;'> 41.95KB </span>","children":null,"spread":false},{"title":"downloads.cpython-39.pyc <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 53.84KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false}],"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 275B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"zjiaxiao.iml <span style='color:#111;'> 477B </span>","children":null,"spread":false}],"spread":true},{"title":"abnoenal_video_five_type_test","children":[{"title":"gB_9_s5_2019-03-07T16;31;48+01;00_rgb_body_005.mp4 <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"best.pt <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false}],"spread":true},{"title":"my_func.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"detect.cpython-39.pyc <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"five_type_det_service.cpython-39.pyc <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"my_func.cpython-39.pyc <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"config","children":[{"title":"rtmdet_m_8xb32-300e_coco.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50_fpn_2x_coco.py <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false},{"title":"_base_","children":[{"title":"default_runtime.py <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"schedules","children":[{"title":"schedule_2x.py <span style='color:#111;'> 815B </span>","children":null,"spread":false},{"title":"schedule_1x.py <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"schedule_20e.py <span style='color:#111;'> 816B </span>","children":null,"spread":false}],"spread":false},{"title":"datasets","children":[{"title":"dsdl.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"isaid_instance.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"ade20k_instance.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"objects365v1_detection.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"cityscapes_instance.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"voc0712.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"coco_semantic.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"mot_challenge.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"wider_face.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"coco_caption.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"coco_wholebody.py <span style='color:#111;'> 30.01KB </span>","children":null,"spread":false},{"title":"youtube_vis.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"semi_coco_detection.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"deepfashion.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"mot_challenge_reid.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"refcoco.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"coco_panoptic.py <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"ade20k_panoptic.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"coco_instance.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"coco_instance_semantic.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"refcocog.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"refcoco+.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"lvis_v0.5_instance.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"coco_detection.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"ade20k_semantic.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"lvis_v1_instance.py <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"cityscapes_detection.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"objects365v2_detection.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"mot_challenge_det.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"openimages_detection.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"v3det.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false}],"spread":false},{"title":"models","children":[{"title":"fast-rcnn_r50_fpn.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"rpn_r50-caffe-c4.py <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"cascade-mask-rcnn_r50_fpn.py <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"mask-rcnn_r50_fpn.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"cascade-rcnn_r50_fpn.py <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"ssd300.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"retinanet_r50_fpn.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"rpn_r50_fpn.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50-caffe-dc5.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50_fpn.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50-caffe-c4.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"mask-rcnn_r50-caffe-c4.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"rtmpose-m_8xb64-270e_coco-wholebody-256x192.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"UI","children":[{"title":"icon.ico <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"基于YOLOv8的智慧校园电动车超速监测系统a8ce10d3eb8049fe9a7d7f39f45402b1.txt <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"模型训练","children":[{"title":"yolov8n.pt <span style='color:#111;'> 6.25MB </span>","children":null,"spread":false},{"title":"best.pt <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false},{"title":"Detection_video.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"yolo11n.pt <span style='color:#111;'> 5.35MB </span>","children":null,"spread":false},{"title":"train_mode.py <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.txt <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明