Transformer-informer-iTransformer等多个代码,时序预测

上传者: m0_64258486 | 上传时间: 2025-10-09 15:05:35 | 文件大小: 5.88MB | 文件类型: ZIP
随着深度学习技术的快速发展,时序预测作为一种预测未来某个时间点上数据值的技术,在金融、天气预报、能源消耗分析等多个领域得到了广泛的应用。在这些领域中,Transformer模型因其自注意力机制的引入而能够在处理序列数据时捕捉长距离依赖关系,从而极大提高了预测的准确性。然而,Transformer模型在某些情况下会遇到计算复杂度高和难以捕捉长期依赖的问题,为了解决这些问题,研究者们提出了多种改进的模型,如Transformer-informer和iTransformer等。 Transformer-informer是一种为了解决Transformer模型在长序列数据上的不足而设计的模型。它通过引入了一种新的注意力机制——长短期注意力机制(Long Short-Term Attention),使得模型能够更加有效地学习到序列数据中重要的长期依赖关系。在该机制下,长距离的依赖信息能够通过较少的计算步骤被模型捕捉到,大大提高了模型在处理长序列数据时的效率。 iTransformer则是在Transformer的基础上,对模型结构和训练过程进行了优化。iTransformer使用了一种有效的注意力机制,名为“intra-attention”,它不仅关注序列中各元素之间的关系,还能关注序列内部的模式。此外,iTransformer还采用了改进的前馈网络和位置编码策略,以更好地处理不同长度的序列数据。在模型训练方面,iTransformer引入了更加高效的梯度下降算法和正则化策略,以避免过拟合和提升模型的泛化能力。 这些改进模型的代码往往基于Python语言实现,因为Python简洁明了,同时拥有丰富的数据处理和机器学习库。在Python环境下,研究人员可以方便地利用诸如NumPy、Pandas、TensorFlow或PyTorch等工具进行模型的设计、训练和验证。例如,压缩包中的iTransformer-main文件,很可能包含了iTransformer模型的核心代码、数据预处理脚本、训练与测试的脚本等,这些文件对于希望在时序预测任务中利用改进Transformer模型的研究者来说,是宝贵的资源。 从文件名称来看,iTransformer-main不仅代表了这个压缩包的主要内容是iTransformer相关的代码,也可能暗示着这是一个模块化的设计,包含了模型的入口文件或主函数。研究人员可以通过这些代码来调整模型的参数,进行实验和优化,最终实现对时间序列数据的准确预测。 这些基于Transformer的改进模型及其相关代码,不仅推动了时序预测技术的发展,也极大地促进了深度学习在实际应用中的落地。通过不断优化算法和模型结构,研究者们可以更加有效地处理和预测时间序列数据,为各行各业提供精准的决策支持。

文件下载

资源详情

[{"title":"( 105 个子文件 5.88MB ) Transformer-informer-iTransformer等多个代码,时序预测","children":[{"title":".gitignore <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.83KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 905B </span>","children":null,"spread":false},{"title":"analysis.png <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"boosting.png <span style='color:#111;'> 741.75KB </span>","children":null,"spread":false},{"title":"ablations.png <span style='color:#111;'> 465.64KB </span>","children":null,"spread":false},{"title":"radar.png <span style='color:#111;'> 407.29KB </span>","children":null,"spread":false},{"title":"main_results_alipay.png <span style='color:#111;'> 386.55KB </span>","children":null,"spread":false},{"title":"increase_lookback.png <span style='color:#111;'> 386.34KB </span>","children":null,"spread":false},{"title":"architecture.png <span style='color:#111;'> 368.77KB </span>","children":null,"spread":false},{"title":"algorithm.png <span style='color:#111;'> 301.80KB </span>","children":null,"spread":false},{"title":"motivation.png <span style='color:#111;'> 263.98KB </span>","children":null,"spread":false},{"title":"efficiency.png <span style='color:#111;'> 259.72KB </span>","children":null,"spread":false},{"title":"groups.png <span style='color:#111;'> 240.79KB </span>","children":null,"spread":false},{"title":"datasets.png <span style='color:#111;'> 227.55KB </span>","children":null,"spread":false},{"title":"main_results.png <span style='color:#111;'> 163.70KB </span>","children":null,"spread":false},{"title":"datasets_mtsf.png <span style='color:#111;'> 152.73KB </span>","children":null,"spread":false},{"title":"efficient.png <span style='color:#111;'> 130.41KB </span>","children":null,"spread":false},{"title":"generability.png <span style='color:#111;'> 125.53KB </span>","children":null,"spread":false},{"title":"boosting_trm.png <span style='color:#111;'> 120.54KB </span>","children":null,"spread":false},{"title":"pt.png <span style='color:#111;'> 75.67KB </span>","children":null,"spread":false},{"title":"formulations.png <span style='color:#111;'> 51.39KB </span>","children":null,"spread":false},{"title":"pi.png <span style='color:#111;'> 36.03KB </span>","children":null,"spread":false},{"title":"layernorm.png <span style='color:#111;'> 35.39KB </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 18.99KB </span>","children":null,"spread":false},{"title":"exp_long_term_forecasting_partial.py <span style='color:#111;'> 18.77KB </span>","children":null,"spread":false},{"title":"exp_long_term_forecasting.py <span style='color:#111;'> 14.08KB </span>","children":null,"spread":false},{"title":"SelfAttention_Family.py <span style='color:#111;'> 12.55KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 8.94KB </span>","children":null,"spread":false},{"title":"Embed.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"Transformer_EncDec.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"timefeatures.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"Informer.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"Transformer.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"tools.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"Flowformer.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"iTransformer.py <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"Flashformer.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"iFlashformer.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"iInformer.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"iFlowformer.py <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"iReformer.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"Reformer.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"data_factory.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"exp_basic.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 866B </span>","children":null,"spread":false},{"title":"masking.py <span style='color:#111;'> 832B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"iFlashTransformer.sh <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"iFlashTransformer.sh <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"iFlashTransformer.sh <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"iTransformer_07.sh <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"iTransformer_04.sh <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"iTransformer_08.sh <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"iTransformer_03.sh <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"iTransformer.sh <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"iFlowformer.sh <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"iReformer.sh <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"iInformer.sh <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"iTransformer_ETTm2.sh <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"iTransformer_ETTh2.sh <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"iTransformer_ETTm1.sh <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"iTransformer_ETTh1.sh <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明