数据挖掘可视化系统通过数据挖掘理论、机器学习算法以及数据可视化等信息技术,并基于 Flask 框架搭建 Web 服务器,.zip

上传者: m0_63168877 | 上传时间: 2025-04-19 15:41:35 | 文件大小: 8.92MB | 文件类型: ZIP
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。

文件下载

资源详情

[{"title":"( 104 个子文件 8.92MB ) 数据挖掘可视化系统通过数据挖掘理论、机器学习算法以及数据可视化等信息技术,并基于 Flask 框架搭建 Web 服务器,.zip","children":[{"title":"DMVSystem.css <span style='color:#111;'> 8.64KB </span>","children":null,"spread":false},{"title":"reset.css <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"spam_ham_dataset.csv <span style='color:#111;'> 5.15MB </span>","children":null,"spread":false},{"title":"spam_ham_dataset.csv <span style='color:#111;'> 5.15MB </span>","children":null,"spread":false},{"title":"cancer_norm.csv <span style='color:#111;'> 361.55KB </span>","children":null,"spread":false},{"title":"cancer.csv <span style='color:#111;'> 119.25KB </span>","children":null,"spread":false},{"title":"cancer.csv <span style='color:#111;'> 119.25KB </span>","children":null,"spread":false},{"title":"forestfires.csv <span style='color:#111;'> 24.88KB </span>","children":null,"spread":false},{"title":"forestfires.csv <span style='color:#111;'> 24.88KB </span>","children":null,"spread":false},{"title":"forestfire1.csv <span style='color:#111;'> 17.73KB </span>","children":null,"spread":false},{"title":"housing.csv <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"housing.csv <span style='color:#111;'> 13.65KB </span>","children":null,"spread":false},{"title":"studentEnrollment.csv <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"tree.csv <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"tree.csv <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"iconfont.eot <span style='color:#111;'> 23.00KB </span>","children":null,"spread":false},{"title":"timg.gif <span style='color:#111;'> 49.17KB </span>","children":null,"spread":false},{"title":"scatter.html <span style='color:#111;'> 6.30KB </span>","children":null,"spread":false},{"title":"DMVSystem.html <span style='color:#111;'> 6.21KB </span>","children":null,"spread":false},{"title":"DMVS.ico <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"echarts.min.js <span style='color:#111;'> 759.64KB </span>","children":null,"spread":false},{"title":"DMVSystem.js <span style='color:#111;'> 24.48KB </span>","children":null,"spread":false},{"title":"iconfont.json <span style='color:#111;'> 11.74KB </span>","children":null,"spread":false},{"title":"api.md <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"long.png <span style='color:#111;'> 1.52MB </span>","children":null,"spread":false},{"title":"逻辑回归.png <span style='color:#111;'> 490.22KB </span>","children":null,"spread":false},{"title":"系统主界面.png <span style='color:#111;'> 257.06KB </span>","children":null,"spread":false},{"title":"可视化界面1.png <span style='color:#111;'> 241.05KB </span>","children":null,"spread":false},{"title":"可视化界面2.png <span style='color:#111;'> 229.09KB </span>","children":null,"spread":false},{"title":"导入数据集.png <span style='color:#111;'> 221.24KB </span>","children":null,"spread":false},{"title":"short.png <span style='color:#111;'> 220.83KB </span>","children":null,"spread":false},{"title":"ham.png <span style='color:#111;'> 158.34KB </span>","children":null,"spread":false},{"title":"spam.png <span style='color:#111;'> 147.30KB </span>","children":null,"spread":false},{"title":"dimension1.png <span style='color:#111;'> 146.27KB </span>","children":null,"spread":false},{"title":"dimension3.png <span style='color:#111;'> 136.41KB </span>","children":null,"spread":false},{"title":"dimension2.png <span style='color:#111;'> 112.87KB </span>","children":null,"spread":false},{"title":"模型训练.png <span style='color:#111;'> 112.34KB </span>","children":null,"spread":false},{"title":"模型训练及数据挖掘结果可视化.png <span style='color:#111;'> 112.34KB </span>","children":null,"spread":false},{"title":"raw_andrews_curves.png <span style='color:#111;'> 88.89KB </span>","children":null,"spread":false},{"title":"raw_parallel_coordinates.png <span style='color:#111;'> 81.38KB </span>","children":null,"spread":false},{"title":"原始数据集表格展示.png <span style='color:#111;'> 77.19KB </span>","children":null,"spread":false},{"title":"线性回归.png <span style='color:#111;'> 73.74KB </span>","children":null,"spread":false},{"title":"KNN.png <span style='color:#111;'> 73.17KB </span>","children":null,"spread":false},{"title":"朴素贝叶斯.png <span style='color:#111;'> 61.78KB </span>","children":null,"spread":false},{"title":"决策树.png <span style='color:#111;'> 51.25KB </span>","children":null,"spread":false},{"title":"show.png <span style='color:#111;'> 40.09KB </span>","children":null,"spread":false},{"title":"Background.png <span style='color:#111;'> 36.67KB </span>","children":null,"spread":false},{"title":"result_4.png <span style='color:#111;'> 31.72KB </span>","children":null,"spread":false},{"title":"result_3.png <span style='color:#111;'> 29.84KB </span>","children":null,"spread":false},{"title":"result_2.png <span style='color:#111;'> 29.74KB </span>","children":null,"spread":false},{"title":"feature_relative.png <span style='color:#111;'> 29.52KB </span>","children":null,"spread":false},{"title":"raw_4.png <span style='color:#111;'> 29.24KB </span>","children":null,"spread":false},{"title":"raw_3.png <span style='color:#111;'> 28.62KB </span>","children":null,"spread":false},{"title":"show.png <span style='color:#111;'> 28.60KB </span>","children":null,"spread":false},{"title":"result_1.png <span style='color:#111;'> 28.46KB </span>","children":null,"spread":false},{"title":"result_1.png <span style='color:#111;'> 28.18KB </span>","children":null,"spread":false},{"title":"raw_heatmap.png <span style='color:#111;'> 27.17KB </span>","children":null,"spread":false},{"title":"raw_radviz.png <span style='color:#111;'> 25.90KB </span>","children":null,"spread":false},{"title":"raw_2.png <span style='color:#111;'> 25.57KB </span>","children":null,"spread":false},{"title":"raw_1.png <span style='color:#111;'> 23.57KB </span>","children":null,"spread":false},{"title":"result_2.png <span style='color:#111;'> 23.43KB </span>","children":null,"spread":false},{"title":"SVM.png <span style='color:#111;'> 23.34KB </span>","children":null,"spread":false},{"title":"raw_scatter.png <span style='color:#111;'> 23.07KB </span>","children":null,"spread":false},{"title":"result.png <span style='color:#111;'> 11.34KB </span>","children":null,"spread":false},{"title":"DMVS.png <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"yuce_c.png <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"fenlei_c.png <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 6.45KB </span>","children":null,"spread":false},{"title":"CART.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"KNN.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"SupportVectorMachine.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"clf.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"MultipleLinearRegression.py <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"LogisticRegression.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"DM_result_visualization.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"divide_data.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"DM_result_visualization.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"raw_data_visualization.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"WordStatistic.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"LinearRegression.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"raw_data_visualization.py <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"raw_data_visualization.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"ModelManager.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"NaiveBayes.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"reg.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"PoolManager.py <span style='color:#111;'> 990B </span>","children":null,"spread":false},{"title":"model_selection.py <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"model_selection.py <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"TextAnalyzer.py <span style='color:#111;'> 820B </span>","children":null,"spread":false},{"title":"model_selection.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"model_evaluation.py <span style='color:#111;'> 682B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 608B </span>","children":null,"spread":false},{"title":"iconfont.ttf <span style='color:#111;'> 22.83KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明