基于知识图谱的实体识别

上传者: m0_59401848 | 上传时间: 2022-05-16 12:05:04 | 文件大小: 30.73MB | 文件类型: RAR
基于条件随机场对中文案件语料进行命名实体识别。在学习知识图谱理论课时,我们知道实体(Entity)是知识图谱的基本单位,也是承载信息的重要语言单位。实体识别是知识图谱应用的重要技术。目前实体识别主要有三种方法: 基于规则和词典的实体识别 基于统计机器学习的实体识别 基于深度学习神经网络的实体识别 条件随机场(Conditional random field,CRF)是一种条件概率分布模型 P(Y|X) ,表示的是给定一组输入随机变量 X 的条件下另一组输出随机变量 Y 的马尔可夫随机场。 CRF 是一个序列化标注算法(sequence labeling algorithm),接收一个输入序列如X=(x1, x2,…, xn)并且输出目标序列Y=(y1, y2,…, yn)  ,也能被看作是一种seq2seq模型。这里使用大写 X,Y 表示序列。例如,在词性标注任务中,输入序列为一串单词,输出序列就是相应的词性。 除了词性标注之外,CRF还可以用来做chunking,命名实体识别等任务。一般地,输入序列X被称为 observations, Y叫作 states。

文件下载

资源详情

[{"title":"( 2 个子文件 30.73MB ) 基于知识图谱的实体识别","children":[{"title":"实验二","children":[{"title":"命名实体识别实验步骤.docx <span style='color:#111;'> 11.71MB </span>","children":null,"spread":false},{"title":"Chinese-NER-based-on-CRF-master.zip <span style='color:#111;'> 19.04MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明