电子科技大学人工智能(李晶晶)全套资料

上传者: m0_59180666 | 上传时间: 2023-02-08 22:16:16 | 文件大小: 48.88MB | 文件类型: ZIP
课件,实验 A*算法,ID3决策树,强化学习Q-learning 课件,实验 A*算法,ID3决策树,强化学习Q-learning 课件,实验 A*算法,ID3决策树,强化学习Q-learning 课件,实验 A*算法,ID3决策树,强化学习Q-learning 课件,实验 A*算法,ID3决策树,强化学习Q-learning 课件,实验 A*算法,ID3决策树,强化学习Q-learning 课件,实验 A*算法,ID3决策树,强化学习Q-learning

文件下载

资源详情

[{"title":"( 68 个子文件 48.88MB ) 电子科技大学人工智能(李晶晶)全套资料","children":[{"title":"人工智能","children":[{"title":"AI_Exp","children":[{"title":"A_star Algorithm","children":[{"title":"Astar8nums.exe <span style='color:#111;'> 1.93MB </span>","children":null,"spread":false},{"title":"Astar8nums.cpp <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"实验二-A.docx <span style='color:#111;'> 185.80KB </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"AI_Exp.iml <span style='color:#111;'> 333B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 197B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Q_Table(dummy)","children":[{"title":"__MACOSX","children":[{"title":"Q_Table(dummy)","children":[{"title":"._.DS_Store <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"._Readme.md <span style='color:#111;'> 523B </span>","children":null,"spread":false},{"title":"._simulation.png <span style='color:#111;'> 291B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Q_Table(dummy)","children":[{"title":"train_rewards_curve.png <span style='color:#111;'> 35.34KB </span>","children":null,"spread":false},{"title":"agent.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"simulation.png <span style='color:#111;'> 212.91KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-37.pyc <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"plot.cpython-37.pyc <span style='color:#111;'> 728B </span>","children":null,"spread":false},{"title":"utils.cpython-39.pyc <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"plot.cpython-39.pyc <span style='color:#111;'> 704B </span>","children":null,"spread":false},{"title":"agent.cpython-37.pyc <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"agent.cpython-39.pyc <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"Readme.md <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"outputs","children":[{"title":"CliffWalking-v0","children":[{"title":"models","children":[{"title":"Q_table.npy <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"results","children":[{"title":"eval_rewards.npy <span style='color:#111;'> 248B </span>","children":null,"spread":false},{"title":"train_rewards_curve.png <span style='color:#111;'> 43.44KB </span>","children":null,"spread":false},{"title":"train_rewards.npy <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"eval_running_rewards.npy <span style='color:#111;'> 368B </span>","children":null,"spread":false},{"title":"train_running_rewards.npy <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"eval_rewards_curve.png <span style='color:#111;'> 46.93KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":".idea","children":[{"title":"Q_Table(dummy).iml <span style='color:#111;'> 494B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 197B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"plot.py <span style='color:#111;'> 563B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"ID3","children":[{"title":"实验四-决策树.docx <span style='color:#111;'> 587.07KB </span>","children":null,"spread":false},{"title":"ID3","children":[{"title":"main.py <span style='color:#111;'> 7.48KB </span>","children":null,"spread":false},{"title":"Iris-train.txt <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"Iris-test.txt <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"test.iml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 260B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"课件","children":[{"title":"lec06-一阶逻辑.pdf <span style='color:#111;'> 3.44MB </span>","children":null,"spread":false},{"title":"lec07_probability.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"lec09_ML III.pdf <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false},{"title":"lec09_ML II.pdf <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"lec08_bayes_nets_IV_sampling.pdf <span style='color:#111;'> 1.80MB </span>","children":null,"spread":false},{"title":"lec09_ML I.pdf <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"lec01- 1. Intro to AI(Ch. 1).pdf <span style='color:#111;'> 4.85MB </span>","children":null,"spread":false},{"title":"lec05- 2. Reinforcement Learning II.pdf <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"lec02- 1. Uninformed Search(Ch. 3.1–3.4).pdf <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false},{"title":"lec07_bayes_nets_representation.pdf <span style='color:#111;'> 1.47MB </span>","children":null,"spread":false},{"title":"lec07_bayes_nets_II_independence.pdf <span style='color:#111;'> 1.55MB </span>","children":null,"spread":false},{"title":"lec04 - MDP (Ch.17.1-Ch.17.3).pdf <span style='color:#111;'> 2.81MB </span>","children":null,"spread":false},{"title":"@AI—AModernApproach.pdf <span style='color:#111;'> 19.95MB </span>","children":null,"spread":false},{"title":"lec05- 1. Reinforcement Learning I (Ch21.1-3).pdf <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"lec02- 2. A Search and Heuristics(Ch. 3.5–3.6).pdf <span style='color:#111;'> 2.71MB </span>","children":null,"spread":false},{"title":"lec09_ML IV.pdf <span style='color:#111;'> 983.36KB </span>","children":null,"spread":false},{"title":"lec03- Games minimax, alpha-beta (Ch. 5.1-3).pdf <span style='color:#111;'> 1.23MB </span>","children":null,"spread":false},{"title":"lec08_bayes_nets_III_inference.pdf <span style='color:#111;'> 2.68MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明