Pytorch实现图神经网络 (GNN) 与传统多层感知器 (MLP)的电力系统分析 (完整源码和数据包)

上传者: m0_57362105 | 上传时间: 2022-11-24 16:26:26 | 文件大小: 64.68MB | 文件类型: ZIP
该项目研究了图神经网络在电力系统分析中的应用。 它旨在比较图神经网络 (GNN) 与传统多层感知器 (MLP) 模型在相同模型复杂度下的性能。 代码是在 Jupyter Notebook IDE 中使用 pytorch 框架开发的。 神经网络(NN)的最新进展框架被称为图神经网络(GNN),在电力系统中,电网可以被表示为一个具有高维特征和总线之间相互依赖关系的图,为电力系统分析提供更好的机器学习状态,在GNN框架中整合电网拓扑结构用于电力流的应用。 在电网中,总线可以被看作是节点,而线可以被看作是边。节点的特征是电压、电压角、有功功率和无功功率,而线路的特征可以是线路电流和线路电阻。 Pytorch实现图神经网络 (GNN) 与传统多层感知器 (MLP)的电力系统分析 (完整源码和数据包) Pytorch实现图神经网络 (GNN) 与传统多层感知器 (MLP)的电力系统分析 (完整源码和数据包) Pytorch实现图神经网络 (GNN) 与传统多层感知器 (MLP)的电力系统分析 (完整源码和数据包)

文件下载

资源详情

[{"title":"( 129 个子文件 64.68MB ) Pytorch实现图神经网络 (GNN) 与传统多层感知器 (MLP)的电力系统分析 (完整源码和数据包)","children":[{"title":"Grid_14 bus_loop.pfd <span style='color:#111;'> 53.02KB </span>","children":null,"spread":false},{"title":"14 bus dataset generation code.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"14 bus loop dataset generation code.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"Grid_14 bus.pfd <span style='color:#111;'> 51.82KB </span>","children":null,"spread":false},{"title":"fig14.PNG <span style='color:#111;'> 58.10KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明