上传者: m0_52024881
|
上传时间: 2025-10-24 10:36:30
|
文件大小: 2.17MB
|
文件类型: PPTX
在深入探究大语言模型PPT的相关技术内容时,首先需要了解自然语言处理(NLP)的基础,其中涵盖了文本表示和核心任务。文本表示在NLP中是将符号转化为向量的过程,目的是让计算机能够更好地理解和处理语言信息。文本表示技术的关键在于核心特点、优势和局限性的平衡。例如,向量空间模型(VSM)利用TF/TF-IDF为词语赋予权重,虽然简单直观且适用于基础文本分析,但其高维稀疏性导致无法准确捕捉词序和上下文信息。而3-gram模型则通过前N-1个词预测当前词,能够实现简单的基础任务效果稳定,但当N增大时,数据的稀疏性问题同样凸显。
为了改善这一状况,低维密集向量技术如Word2Vec应运而生。Word2Vec使用CBOW和Skip-Gram两种方式学习词向量,从而能够捕捉词语的语义关系,但仍然存在一定的局限性,如无法处理一词多义的问题。为此,ELMo利用双向LSTM预训练模型,支持多义性词语的理解,并能够捕捉复杂的上下文信息。ELMo通过动态调整向量来适应不同的上下文,从而更好地捕捉语义的多样性。
Transformer架构是NLP领域的又一重大突破,它采用了注意力机制来支持并行计算,有效地捕获长距离序列中的依赖关系。Transformer的核心机制包括注意力机制,这是通过query、key和value计算权重,从而对上下文进行加权求和的过程。注意力机制的本质是通过相似度计算来分配注意力权重,以此聚焦于关键信息。
在大语言模型的应用上,能够看到NLP基础任务的实践,如文本分类、实体识别、关系抽取、文本摘要、机器翻译和自动问答等。这些任务是通过上述提到的技术手段来实现的,例如使用中文分词、词性标注、子词切分等方法来拆解和理解人类语言。文本分类和实体识别依赖于机器学习算法对文本进行分类和提取关键信息。关系抽取和文本摘要则是对文本内容进行更深层次的理解和信息提炼。机器翻译和自动问答则是在理解语句含义的基础上,实现跨语言的信息转换和问题解答。
大语言模型PPT涉及了自然语言处理的核心技术,包括文本表示、核心任务以及各种模型算法的详细介绍和应用实例。这些技术和模型构成了现代NLP的基石,使得机器能够更加深入和准确地理解和处理人类语言。