机器学习文件夹内的学习文件

上传者: m0_46371988 | 上传时间: 2022-05-13 09:08:35 | 文件大小: 329KB | 文件类型: ZIP
包括csv文件、python文件等。多项式回归、简单线性回归、Position_Salaries.csv等。

文件下载

资源详情

[{"title":"( 62 个子文件 329KB ) 机器学习文件夹内的学习文件","children":[{"title":"P14-Part2-Regression","children":[{"title":"Section 10 - Decision Tree Regression","children":[{"title":"Python","children":[{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"decision_tree_regression.py <span style='color:#111;'> 865B </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"decision_tree_regression.ipynb <span style='color:#111;'> 16.79KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"R","children":[{"title":"regression_template.R <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"decision_tree_regression.R <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Regression","children":[{"title":"Data.csv <span style='color:#111;'> 310.80KB </span>","children":null,"spread":false},{"title":"multiple_linear_regression.ipynb <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"random_forest_regression.ipynb <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"decision_tree_regression.ipynb <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"polynomial_regression.ipynb <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"support_vector_regression.ipynb <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"Classification","children":[{"title":"support_vector_machine.ipynb <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"random_forest_classification.ipynb <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"kernel_svm.ipynb <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"Data.csv <span style='color:#111;'> 19.17KB </span>","children":null,"spread":false},{"title":"k_nearest_neighbors.ipynb <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"naive_bayes.ipynb <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"logistic_regression.ipynb <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"decision_tree_classification.ipynb <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"Section 6 - Simple Linear Regression","children":[{"title":"Python","children":[{"title":"Salary_Data.csv <span style='color:#111;'> 454B </span>","children":null,"spread":false},{"title":"simple_linear_regression.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"simple_linear_regression.ipynb <span style='color:#111;'> 36.00KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"simple_linear_regression-checkpoint.ipynb <span style='color:#111;'> 36.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"R","children":[{"title":"Salary_Data.csv <span style='color:#111;'> 454B </span>","children":null,"spread":false},{"title":"data_preprocessing_template.R <span style='color:#111;'> 446B </span>","children":null,"spread":false},{"title":"simple_linear_regression.R <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Section 9 - Support Vector Regression (SVR)","children":[{"title":"Python","children":[{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"support_vector_regression.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"support_vector_regression.ipynb <span style='color:#111;'> 35.19KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"R","children":[{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"data_preprocessing_template.R <span style='color:#111;'> 446B </span>","children":null,"spread":false},{"title":"polynomial_regression.R <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"Section 11 - Random Forest Regression","children":[{"title":"Python","children":[{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"random_forest_regression.py <span style='color:#111;'> 888B </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"random_forest_regression.ipynb <span style='color:#111;'> 17.58KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"R","children":[{"title":"regression_template.R <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"decision_tree_regression.R <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Section 8 - Polynomial Regression","children":[{"title":"Python","children":[{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"polynomial_regression.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"polynomial_regression.ipynb <span style='color:#111;'> 51.31KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"R","children":[{"title":"Position_Salaries.csv <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"data_preprocessing_template.R <span style='color:#111;'> 446B </span>","children":null,"spread":false},{"title":"polynomial_regression.R <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Section 7 - Multiple Linear Regression","children":[{"title":"Python","children":[{"title":"50_Startups.csv <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"multiple_linear_regression.ipynb <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"multiple_linear_regression.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"R","children":[{"title":"multiple_linear_regression.R <span style='color:#111;'> 838B </span>","children":null,"spread":false},{"title":"data_preprocessing_template.R <span style='color:#111;'> 446B </span>","children":null,"spread":false},{"title":"50_Startups.csv <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明