用生成对抗网络GAN生成数字图像

上传者: m0_46362426 | 上传时间: 2023-01-03 11:26:16 | 文件大小: 94.86MB | 文件类型: ZIP
内容包含数据集、完整源码以及运行结果。 实验内容:利用GAN网络、mnist数据集生成数字图像。 实验过程:1.进行环境配置 2.首先进行数据准备,将MNIST数据集离线下载,添加至对应的路径,避免代码执行过程中重复下载。 2.对MNIST数据集进行可视化展示,便于之后对比。 3.导入程序需要的模块,如torch、numpy等。 4.对分析器进行参数设定与解析。 5.定义生成器和判别器,实现隐藏层、BN以及前向传播。 6.定义损失函数。 7.初始化生成器、判别器和使用GPU加速。 8.定义神经网络优化器,使用动量梯度下降法。 9.对生成网络和训练网络进行训练。 10.结果保存。 11.修改参数,进行结果对比并分析。

文件下载

资源详情

[{"title":"( 514 个子文件 94.86MB ) 用生成对抗网络GAN生成数字图像","children":[{"title":"42400.png <span style='color:#111;'> 798B </span>","children":null,"spread":false},{"title":"22800.png <span style='color:#111;'> 938B </span>","children":null,"spread":false},{"title":"18400.png <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"16800.png <span style='color:#111;'> 705B </span>","children":null,"spread":false},{"title":"11600.png <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明