机器学习算法代码(包括SVM、回归、降维、聚类、决策树、逻辑回归、贝叶斯、随机森林、数据处理与特征工程)

上传者: m0_46246301 | 上传时间: 2021-06-06 14:06:08 | 文件大小: 12.72MB | 文件类型: RAR
适合机器学习初学者熟悉机器学习基本算法,以及数学建模比赛中直接对这些代码进行修改即可

文件下载

资源详情

[{"title":"( 39 个子文件 12.72MB ) 机器学习算法代码(包括SVM、回归、降维、聚类、决策树、逻辑回归、贝叶斯、随机森林、数据处理与特征工程)","children":[{"title":"算法代码","children":[{"title":"随机森林","children":[{"title":"随机森林.ipynb <span style='color:#111;'> 100.32KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"随机森林算法填补缺失值-checkpoint.ipynb <span style='color:#111;'> 32.92KB </span>","children":null,"spread":false},{"title":"回归森林-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"随机森林调参(乳腺癌数据案例)-checkpoint.ipynb <span style='color:#111;'> 64.99KB </span>","children":null,"spread":false},{"title":"随机森林-checkpoint.ipynb <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"随机森林调参(乳腺癌数据案例).ipynb <span style='color:#111;'> 65.01KB </span>","children":null,"spread":false},{"title":"随机森林算法填补缺失值.ipynb <span style='color:#111;'> 32.92KB </span>","children":null,"spread":false},{"title":"回归森林.ipynb <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"异常值检验","children":[{"title":"异常检测-CMU-赵越.pdf <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false}],"spread":true},{"title":"降维算法","children":[{"title":".ipynb_checkpoints","children":[{"title":"day08_Record-checkpoint.ipynb <span style='color:#111;'> 350.34KB </span>","children":null,"spread":false},{"title":"day08_record2-checkpoint.ipynb <span style='color:#111;'> 92.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"day08_record2.ipynb <span style='color:#111;'> 92.53KB </span>","children":null,"spread":false},{"title":"day08_Record.ipynb <span style='color:#111;'> 350.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"SVM","children":[{"title":".ipynb_checkpoints","children":[{"title":"day08_SVM 2 - 理论部分源码-checkpoint.ipynb <span style='color:#111;'> 661.53KB </span>","children":null,"spread":false},{"title":"day08_SVM 2 - 案例部分源码-checkpoint.ipynb <span style='color:#111;'> 373.03KB </span>","children":null,"spread":false},{"title":"day08_SVM1-checkpoint.ipynb <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false}],"spread":true},{"title":"day08_SVM 2 - 理论部分源码.ipynb <span style='color:#111;'> 661.38KB </span>","children":null,"spread":false},{"title":"day08_SVM 2 - 案例部分源码.ipynb <span style='color:#111;'> 373.03KB </span>","children":null,"spread":false},{"title":"day08_SVM1.ipynb <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false}],"spread":true},{"title":"决策树","children":[{"title":"回归树案例.ipynb <span style='color:#111;'> 84.25KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"回归树-checkpoint.ipynb <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"回归树案例-checkpoint.ipynb <span style='color:#111;'> 84.25KB </span>","children":null,"spread":false},{"title":"决策树-checkpoint.ipynb <span style='color:#111;'> 171.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"回归树.ipynb <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"决策树.ipynb <span style='color:#111;'> 25.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"回归","children":[{"title":"day08_线性回归 - 代码.ipynb <span style='color:#111;'> 473.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"数据处理与特征工程","children":[{"title":"数据处理与特征工程.ipynb <span style='color:#111;'> 132.92KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"数据处理与特征工程-checkpoint.ipynb <span style='color:#111;'> 132.92KB </span>","children":null,"spread":false},{"title":"特征工程-checkpoint.ipynb <span style='color:#111;'> 83.07KB </span>","children":null,"spread":false},{"title":"数据预处理-checkpoint.ipynb <span style='color:#111;'> 122.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"数据预处理.ipynb <span style='color:#111;'> 122.58KB </span>","children":null,"spread":false},{"title":"特征工程.ipynb <span style='color:#111;'> 83.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"朴素贝叶斯","children":[{"title":"day08_Naive Bayes源码.ipynb <span style='color:#111;'> 2.99MB </span>","children":null,"spread":false}],"spread":true},{"title":"聚类算法","children":[{"title":".ipynb_checkpoints","children":[{"title":"day08_聚类算法与Kmeans-checkpoint-checkpoint.ipynb <span style='color:#111;'> 3.39MB </span>","children":null,"spread":false}],"spread":true},{"title":"day08_聚类算法与Kmeans-checkpoint.ipynb <span style='color:#111;'> 3.39MB </span>","children":null,"spread":false}],"spread":true},{"title":"逻辑回归","children":[{"title":".ipynb_checkpoints","children":[{"title":"day08_逻辑回归-checkpoint.ipynb <span style='color:#111;'> 208.36KB </span>","children":null,"spread":false},{"title":"day08_评分卡模型-checkpoint-checkpoint.ipynb <span style='color:#111;'> 265.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"day08_逻辑回归.ipynb <span style='color:#111;'> 232.37KB </span>","children":null,"spread":false},{"title":"day08_评分卡模型-checkpoint.ipynb <span style='color:#111;'> 265.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明