基于深度学习的疲劳驾驶检测算法

上传者: m0_37829549 | 上传时间: 2021-12-05 17:13:43 | 文件大小: 2.28MB | 文件类型: -
针对现有疲劳驾驶检测算法实用性差或准确率低的问题, 本文提出了一种基于深度学习的疲劳驾驶检测算法. 首先, 使用 HOG (Histogram of Oriented Gradient) 特征算子检测人脸的存在; 其次, 利用特征点模型实现人脸的对齐, 同时实现眼睛、嘴巴区域的分割; 最后通过深度卷积神经网络提取驾驶员的眼部疲劳特征, 并融合驾驶员嘴部的疲劳特征进行疲劳预警. 大量的实验表明, 该方法在疲劳驾驶检测的准确率、实时性等方面都取得明显的性能提升.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明