基于Pytorch实现的语音情感识别

上传者: m0_37302966 | 上传时间: 2025-11-17 16:40:53 | 文件大小: 97KB | 文件类型: ZIP
基于Pytorch实现的语音情感识别系统 本项目是一个语音情感识别项目,使用多种的预处理方法,使用多种模型,实现了语音情感识别。 使用准备 Anaconda 3 Python 3.8 Pytorch 1.13.1 Windows 10 or Ubuntu 18.04 说明: RAVDESS数据集只使用Audio_Speech_Actors_01-24.zip 更大数据集数据集有近2.5万条数据,做了数据量均衡的,知识星球也提供了该数据集的特征数据。 准备数据 生成数据列表,用于下一步的读取需要,项目默认提供一个数据集RAVDESS,这个数据集的介绍页面,这个数据包含中性、平静、快乐、悲伤、愤怒、恐惧、厌恶、惊讶八种情感,本项目只使用里面的Audio_Speech_Actors_01-24.zip,数据集,说话的语句只有Kids are talking by the door和Dogs are sitting by the door,可以说这个训练集是非常简单的。下载这个数据集并解压到dataset目录下。

文件下载

资源详情

[{"title":"( 31 个子文件 97KB ) 基于Pytorch实现的语音情感识别","children":[{"title":"SpeechEmotionRecognition-Pytorch-master","children":[{"title":"eval.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'> 662B </span>","children":null,"spread":false},{"title":"create_data.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"bi_lstm.yml <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"infer.py <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"images","children":[{"title":"image1.png <span style='color:#111;'> 58.24KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 325B </span>","children":null,"spread":false},{"title":"mser","children":[{"title":"metric","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 317B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"data_utils","children":[{"title":"utils.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"featurizer.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"collate_fn.py <span style='color:#111;'> 940B </span>","children":null,"spread":false},{"title":"reader.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"audio.py <span style='color:#111;'> 21.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"predict.py <span style='color:#111;'> 7.66KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 29.24KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"scheduler.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"record.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"models","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"bi_lstm.py <span style='color:#111;'> 820B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 15.85KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明