7963-bayesian-model-agnostic-meta-learning.pdf

上传者: liz_Lee | 上传时间: 2021-06-01 22:06:07 | 文件大小: 2.88MB | 文件类型: PDF
由于模型固有的不确定性,学习从少量数据集推断贝叶斯后验是实现稳健元学习的重要一步。在本文中,我们提出了一种新的贝叶斯模型不可知的元学习方法。该方法结合了有效的基于梯度的元学习和非参数变分推理。与以往的方法不同的是,在快速适应过程中,该方法能够学习复杂的不确定性结构,而不是简单的高斯近似;在元更新过程中,采用了新的贝叶斯机制,防止了元级过拟合。它仍然是一种基于梯度的方法,也是第一个适用于包括强化学习在内的各种任务的不依赖贝叶斯模型的元学习方法。实验结果表明,该方法在正弦回归、图像分类、主动学习和强化学习等方面具有较好的准确性和鲁棒性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明