论文笔记—Recent Advances in Autoencoder-Based Representation Learning.pdf

上传者: liz_Lee | 上传时间: 2021-06-01 22:06:06 | 文件大小: 2.36MB | 文件类型: PDF
在很少或没有监督的情况下学习有用的表示是人工智能的一个关键挑战。我们深入回顾了表示学习的最新进展,重点关注基于自编码器的模型。为了组织这些结果,我们使用了被认为对下游任务有用的元先验,比如特征的解缠和分层组织。特别地,我们揭示了三种主要机制来执行这些特性,即(i)正则化(近似或聚集)后验分布,(ii)分解编码和解码分布,或(iii)引入结构化的先验分布。虽然有一些有希望的结果,隐性或显性监督仍然是一个关键的促成因素,所有当前的方法使用强烈的归纳偏差和建模假设。最后,我们通过率失真理论分析了基于自编码器的表示学习,并明确了关于下游任务的现有知识量和表示对该任务的有用程度之间的权衡。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明