基于哈希的图像检索(LSH,ITQ)matlab代码

上传者: lilai619 | 上传时间: 2019-12-21 18:51:15 | 文件大小: 1.3MB | 文件类型: rar
哈希图像检索,包括LSH以及ITQ两种算法。之前帮网友做的,顺带分享一下。

文件下载

资源详情

[{"title":"( 36 个子文件 1.3MB ) 基于哈希的图像检索(LSH,ITQ)matlab代码","children":[{"title":"myprojects","children":[{"title":"demo2_gist_visualization.m <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"使用说明.txt <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"demo5_img_generation.m <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"demo7_ITQ_retrieval.m <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"old","children":[{"title":"cifar-10-batches-mat","children":null,"spread":false}],"spread":true},{"title":"new","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"utils","children":[{"title":"recall_precision.m <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"simMat_sparse.m <span style='color:#111;'> 166B </span>","children":null,"spread":false},{"title":"simMat.m <span style='color:#111;'> 320B </span>","children":null,"spread":false},{"title":"eva_lookup.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"eva_lookup1.m <span style='color:#111;'> 944B </span>","children":null,"spread":false},{"title":"hammingDist_sparse.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"hammingDist.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"distMat.m <span style='color:#111;'> 474B </span>","children":null,"spread":false},{"title":"eva_ranking1.m <span style='color:#111;'> 773B </span>","children":null,"spread":false},{"title":"eva_ranking.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"gendata.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"extractbit.m <span style='color:#111;'> 224B </span>","children":null,"spread":false},{"title":"compactbit.m <span style='color:#111;'> 293B </span>","children":null,"spread":false}],"spread":false},{"title":"gist","children":[{"title":"showGist.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"test2.jpg <span style='color:#111;'> 239.28KB </span>","children":null,"spread":false},{"title":"LMgist.m <span style='color:#111;'> 8.05KB </span>","children":null,"spread":false},{"title":"test1.jpg <span style='color:#111;'> 30.64KB </span>","children":null,"spread":false},{"title":"imresizecrop.m <span style='color:#111;'> 522B </span>","children":null,"spread":false},{"title":"test3.jpg <span style='color:#111;'> 1004.42KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"demo3_gist_extraction.m <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"demo6_LSH_retrieval.m <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"使用说明.png <span style='color:#111;'> 39.36KB </span>","children":null,"spread":false},{"title":"demo1_data_visualization.m <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"methods","children":[{"title":"LSH","children":[{"title":"compressLSH.m <span style='color:#111;'> 304B </span>","children":null,"spread":false},{"title":"processRange.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"evaluate_LSH.m <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"lshfunc.m <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"ITQ","children":[{"title":"compressITQ.m <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"evaluate_ITQ.m <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"trainITQ.m <span style='color:#111;'> 302B </span>","children":null,"spread":false},{"title":"ITQ.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"demo4_data_process.m <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • lepanle :
    按理来说应该能够检索到才对呀,cifar数据集包含了马、车、飞机这三类。
    2019-12-04
  • 湖底咸鱼 :
    这是咋回事啊引用了不存在的字段 'index'。出错 demo5_img_generation (line 73)idx_test = exp_data.index;
    2019-05-15
  • tibetkingon :
    有一定的参考价值。
    2018-07-10
  • Airy00 :
    demo6和demo7出现维度错误是因为选择的查询图像在exp_data.index中不能被索引,简单来说就是在测试集中找不到你要查询的图像,换一张图像就好了
    2018-03-10
  • jiangYIer123 :
    demo6出现: 错误使用 min矩阵维度必须一致。出错 demo6_LSH_retrieval &amp;#40;line 54&amp;#41; D=min(Dhamm,D);dem
    2018-03-08

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明