上传者: jyvycv
|
上传时间: 2021-08-27 13:05:21
|
文件大小: 1.14MB
|
文件类型: PDF
Bridging the Gap between Spatial and Spectral Domains:A Survey on Graph Neural Networks
深度学习的成功在各种机器学习任务中得到了广泛认可,包括图像分类、音频识别和自然语言处理。作为深度学习在这些领域之外的扩展,图神经网络 (GNN) 旨在处理以前的深度学习技术难以处理的非欧图结构。现有的 GNN 使用各种技术呈现,这使得直接比较和交叉引用更加复杂。尽管现有研究将 GNN 分为基于空间和基于光谱的技术,但尚未对它们的关系进行彻底检查。为了弥补这一差距,本研究提出了一个系统地整合了大多数 GNN 的单一框架。我们将现有的 GNN 组织到空间和光谱域中,并暴露每个域内的连接。谱图理论和近似理论的回顾在进一步研究中建立了跨空间和谱域的强关系。