机器学习中神经网络的python实现代码及详细解释(基于jupyter)

上传者: joycychou | 上传时间: 2022-02-24 14:12:20 | 文件大小: 10.58MB | 文件类型: RAR
资源特点:基于北京交通大学《机器学习》课程中,神经网络部分的课程作业,一共有六个案例 1.1 使用 sklearn 的多层感知机 1.2 神经网络:线性回 1.3 神经网络:对数几率回归 1.4 神经网络:三层感知机 1.5 实现 n 层感知机 1.6 设计一种改良的优化算法 每个案例配有详细的代码和解释,都能测试通过。 一、实验内容 1.1 使用 sklearn 的多层感知机 使用 sklearn 自带的手写数字数据集: 1. 学习标准化处理的方法 2. 使用 sklearn.neural_network.MLPClassifier 完成手写数字分类任务 3. 绘制学习率为 3,1,0.1,0.01 训练集损失函数的变化曲线 1.2 神经网络:线性回归 1. 学会梯度下降的基本思想 2. 学会使用梯度下降求解线性回归 3. 了解标准化处理的效果 1.3 神经网络:对数几率回归 1. 完成对数几率回归 2. 使用梯度下降求解模型参数 3. 绘制模型损失值的变化曲线 4. 调整学习率和迭代轮数,观察损失值曲线的变化 5. 按照给定的学习率和迭代轮数,初始化新的参数,绘制新模型在训练集和测

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明