cifar-10-batches-py.zip

上传者: hezhongla0811 | 上传时间: 2019-12-21 19:52:16 | 文件大小: 158.92MB | 文件类型: zip
做cs231n时候的作业上使用到的机器学习分类数据集。 国内下载速度巨慢,而且还需要使用linux系统才能运行那个脚本,因此直接贴在CSDN上。 The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.

文件下载

资源详情

[{"title":"( 8 个子文件 158.92MB ) cifar-10-batches-py.zip","children":[{"title":"cifar-10-batches-py","children":[{"title":"data_batch_4 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"data_batch_2 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"data_batch_1 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"batches.meta <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"data_batch_5 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"test_batch <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"readme.html <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"data_batch_3 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • shan_14 :
    下载的挺快的,好评
    2019-04-12
  • 工药叉 :
    好用的,速度很快
    2019-02-14

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明