如何突破ADAS系统的识别精度.doc

上传者: hanj99 | 上传时间: 2021-02-18 19:01:34 | 文件大小: 1.24MB | 文件类型: DOC
1)ADAS提升识别精度的主要方式为深度学习+大数据。即使用深度神经网络,训练尽可能多的图像数据,提高识别正确率。 一方面,深度学习相对于传统学习,无需工程师手动设定识别特征,并且网络可迁移、复,降低了做视觉识别的门槛。另一方面,训练的数据量通常与ADAS系统的识别率成正比。大量的数据还可以覆盖各种奇奇怪怪的特殊场景(比如高速上来了一群羊),以提升特殊场景下的识别能力。 2)ADAS系统提升识别精度还可以采取增强计算力、使用多传感器融合等路径。 3、ADAS未来发展趋势: 1)深度学习不仅为识别能力赋能,还将被更多用于驾驶策略制定; 2)计算硬件将飞速发展,为ADAS提供更强的计算力支持;

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明