数值分析程序C语言描述

上传者: hainiyouni | 上传时间: 2023-12-06 20:58:04 | 文件大小: 2.05MB | 文件类型: RAR
大部分数值分析教材上需要编写的程序 都可运行得到结果 运行环境 vc++6.0

文件下载

资源详情

[{"title":"( 199 个子文件 2.05MB ) 数值分析程序C语言描述","children":[{"title":"高斯消去法.cpp <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"复化求积.cpp <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"SOR.cpp <span style='color:#111;'> 809B </span>","children":null,"spread":false},{"title":"梯形公式1.cpp <span style='color:#111;'> 777B </span>","children":null,"spread":false},{"title":"牛顿插值.CPP <span style='color:#111;'> 754B </span>","children":null,"spread":false},{"title":"后退欧拉.cpp <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"龙贝格_库塔.cpp <span style='color:#111;'> 728B </span>","children":null,"spread":false},{"title":"Gauss_Seidel.cpp <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"改进的欧拉公式.cpp <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"欧拉公式.cpp <span style='color:#111;'> 627B </span>","children":null,"spread":false},{"title":"二分法求根.cpp <span style='color:#111;'> 608B </span>","children":null,"spread":false},{"title":"二分法求根.cpp <span style='color:#111;'> 608B </span>","children":null,"spread":false},{"title":"a.cpp <span style='color:#111;'> 595B </span>","children":null,"spread":false},{"title":"a.cpp <span style='color:#111;'> 595B </span>","children":null,"spread":false},{"title":"NewtonD.CPP <span style='color:#111;'> 578B </span>","children":null,"spread":false},{"title":"TF.cpp <span style='color:#111;'> 475B </span>","children":null,"spread":false},{"title":"R-K.cpp <span style='color:#111;'> 456B </span>","children":null,"spread":false},{"title":"牛顿简化.cpp <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 296B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"改进的欧拉公式.dsp <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"Gauss_Seidel.dsp <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"龙贝格_库塔.dsp <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"二分法求根.dsp <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"高斯消去法.dsp <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"二分法求根.dsp <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"梯形公式1.dsp <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"牛顿简化.dsp <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"复化求积.dsp <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"后退欧拉.dsp <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"牛顿插值.DSP <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"欧拉公式.dsp <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"NewtonD.dsp <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"R-K.dsp <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"SOR.dsp <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"TF.dsp <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"a.dsp <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"a.dsp <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"改进的欧拉公式.dsw <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"龙贝格_库塔.dsw <span style='color:#111;'> 530B </span>","children":null,"spread":false},{"title":"二分法求根.dsw <span style='color:#111;'> 528B </span>","children":null,"spread":false},{"title":"二分法求根.dsw <span style='color:#111;'> 528B </span>","children":null,"spread":false},{"title":"高斯消去法.dsw <span style='color:#111;'> 528B </span>","children":null,"spread":false},{"title":"梯形公式1.dsw <span style='color:#111;'> 526B </span>","children":null,"spread":false},{"title":"牛顿简化.dsw <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"复化求积.dsw <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"牛顿插值.DSW <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"欧拉公式.dsw <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"后退欧拉.dsw <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"NewtonD.dsw <span style='color:#111;'> 522B </span>","children":null,"spread":false},{"title":"R-K.dsw <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"SOR.dsw <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"TF.dsw <span style='color:#111;'> 512B </span>","children":null,"spread":false},{"title":"a.dsw <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"a.dsw <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"二分法求根.exe <span style='color:#111;'> 220.07KB </span>","children":null,"spread":false},{"title":"二分法求根.exe <span style='color:#111;'> 220.07KB </span>","children":null,"spread":false},{"title":"复化求积.exe <span style='color:#111;'> 220.05KB </span>","children":null,"spread":false},{"title":"NewtonD.exe <span style='color:#111;'> 220.05KB </span>","children":null,"spread":false},{"title":"a.exe <span style='color:#111;'> 220.05KB </span>","children":null,"spread":false},{"title":"a.exe <span style='color:#111;'> 220.05KB </span>","children":null,"spread":false},{"title":"TF.exe <span style='color:#111;'> 220.05KB </span>","children":null,"spread":false},{"title":"a.exe <span style='color:#111;'> 220.04KB </span>","children":null,"spread":false},{"title":"Gauss_Seidel.exe <span style='color:#111;'> 208.07KB </span>","children":null,"spread":false},{"title":"改进的欧拉公式.exe <span style='color:#111;'> 208.07KB </span>","children":null,"spread":false},{"title":"龙贝格_库塔.exe <span style='color:#111;'> 208.06KB </span>","children":null,"spread":false},{"title":"R-K.exe <span style='color:#111;'> 208.06KB </span>","children":null,"spread":false},{"title":"梯形公式1.exe <span style='color:#111;'> 208.06KB </span>","children":null,"spread":false},{"title":"SOR.exe <span style='color:#111;'> 208.06KB </span>","children":null,"spread":false},{"title":"欧拉公式.exe <span style='color:#111;'> 208.05KB </span>","children":null,"spread":false},{"title":"后退欧拉.exe <span style='color:#111;'> 208.05KB </span>","children":null,"spread":false},{"title":"牛顿插值.exe <span style='color:#111;'> 204.07KB </span>","children":null,"spread":false},{"title":"高斯消去法.exe <span style='color:#111;'> 200.06KB </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"复化求积.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"二分法求根.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"龙贝格_库塔.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"改进的欧拉公式.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"高斯消去法.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"二分法求根.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"欧拉公式.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"NewtonD.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"梯形公式1.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"R-K.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"后退欧拉.ncb <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"牛顿简化.ncb <span style='color:#111;'> 33.00KB </span>","children":null,"spread":false},{"title":"a.ncb <span style='color:#111;'> 33.00KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明